• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 26
  • 20
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 123
  • 123
  • 37
  • 28
  • 28
  • 21
  • 20
  • 20
  • 19
  • 18
  • 16
  • 16
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Characterization of the Caenorhabditis elegans var. Bristol (strain N2) Tc1 elements and related transposable elements in Caenorhabditis briggsae

Harris, Linda Janice January 1988 (has links)
The regulation and evolution of the inverted repeat transposable element Tel, found in the nematode Caenorhabditis elegans, was studied. The stability of Tel elements in the N2 strain genome was investigated by cloning seventeen N2 Tel elements. To examine their structural integrity, sixteen cloned N2 Tel elements were restriction mapped and, in the case of some variants, their DNA was partially sequenced. Two restriction site variants, Tcl(Eco).12 and Tcl(Hpa-).9, were found. Tel(1.5).10b had lost 89 bp from one end, while Tcl(1.7).28 contained a 55 bp insertion. Two additional elements, Tcl(0.9).2 and Tcl(0.9).14, had different internal deletions. Each element was about 900 bp in length. The majority of Tel elements cloned from the N2 strain were found to have identical restriction maps. Somatic excision of Tel elements in the N2 genome was demonstrated. Tel elements in N2 are apparently both structurally and functionally intact. Nevertheless, mobilization of Tel elements in the N2 germline is restricted. Two new transposable element families, Barney (also known as TCbl) and TCb2, were discovered in a closely related nematode, Caenorhabditis briggsae due to Tel identity. These two families, distinguished through differential inter-element hybridization, showed multiple banding differences between strains. The open reading frames (ORFs) of Tel and Barney share 71% DNA sequence and 74% amino acid sequence identity. The putative terminus of Barney exhibits 68% identity with the 54 bp terminal repeat of Tel. Partial sequencing of TCb2 revealed that its ORF is equally diverged from Barney and Tel. The basis of the sequence heterogeneity observed in the C. briggsae transposons and not in the C. elegans transposons could be due to either horizontal transfer or alternate paths of divergence. Significant sequence identity was found between Tel, Barney, and HB1 (a transposable element from Drosophila melanogaster) within their coding regions and terminal repeats. These sequence similarities define a subclass of inverted repeat transposable elements inhabiting two different phylla, Arthropoda and Nematoda. / Medicine, Faculty of / Medical Genetics, Department of / Graduate
52

Activation of endogenous full-length active LINE-1 RNA using CRISPR activation to study its role during somatic cell reprogramming

Alsolami, Amjad 11 1900 (has links)
The repetitive sequence composes nearly half of human and mouse genome, most of which are scattered repeats of transposable elements (TEs). The non-LTR retrotransposons are the most accumulated TEs in the mammalian genome and L1s are the most active and abundant autonomous retrotransposons. L1s are highly activated during the epigenetic reprogramming of early mammalian embryos and have the highest level of expression among all retrotransposons throughout the preimplantation state. Moreover, the reprogramming of somatic cells into iPSCs is associated with an increase in L1 expression. The transcription of L1 during the early embryogenesis is necessary to regulate developmental genes and prevent heterochromatin formation to maintain cellular pluripotency state, that guarantying an appropriate future differentiation. However, the role of L1 reactivation during the somatic cell reprogramming remains unclear. Therefore, aim of this work is to study the impact of L1 transcription during the reprogramming process of the iPSCs. We used CRISPR-mediated gene activation (CRISPRa) system that fuse a deactivated Cas9 (dCas9) with transactivation domains (VPR). We confirm the ability to overexpress L1 in Human Embryonic Kidney cells (HEK293) and Human Dermal Fibroblasts (HDFs) by utilizing CRISPR activation system and this will provide a good opportunity to study the role of L1 transcripts during the reprogramming of HDFs into iPSCs. Furthermore, we established stable HDFs that able to express combinations of “Yamanaka” reprogramming factors. The model system will allow to investigate the effect of overexpressing L1 with reprogramming factors to answer the question of whether L1 can trigger or facilitate the reprogramming processes and its underlying mechanism.
53

Détection de l'activité des éléments transposables chez les plantes cultivées : étude du mobilome par la caractérisation du compartiment extrachromosomique / Detection of transposable elements activity in crops : caracterisation of mobilome by the study of the extrachromosomal compartment

Lanciano, Sophie 10 November 2017 (has links)
Les éléments transposables (ET) sont des éléments génétiques ubiquitaires et potentiellement mobiles dans les génomes eucaryotes. Les génomes hôtes ont développé des mécanismes épigénétiques pour contrôler et prévenir la prolifération des ET. Néanmoins, certains ET semblent capables de s’activer en réponses à des stress ou à des facteurs développementaux. Les méthodes disponibles pour détecter l’activité transpositionnelle d’un ET sont souvent limitées au stade transcriptionnel ou sont adaptées à des génomes de petite taille. Relativement peu d’ET sont actuellement connus pour être actifs et les mécanismes spécifiques qui les contrôlent ne sont pas clairement identifiés.Durant mes travaux de thèse, nous avons développé une stratégie de séquençage à haut débit qui permet la détection d’ADN extrachromosomique circulaire (ADNecc) témoignant notamment de l’activité des ET et de la stabilité d’un génome. Ainsi nous avons pu caractériser chez plusieurs espèces le mobilome, défini comme l’ensemble des ADNecc présents dans un tissu.La technique du mobilome-seq s’est avérée être un outil puissant pour la détection des ET actifs notamment chez le riz asiatique Oryza sativa. Notre analyse du mobilome a permis l’identification d’un rétrotransposon PopRice actif dans l’albumen (tissu nourricier du grain) chez différentes variétés de riz. Pour la première fois chez les plantes, nous avons également détecté des insertions somatiques d’ET par re-séquençage de génome entier. À partir de nos résultats, nous avons combiné nos données mobilomiques avec une analyse GWAS pour proposer des pistes afin d’identifier de nouveaux mécanismes de régulation de cet élément.En parallèle, nous avons appliqué la technique du mobilome-seq à différents organismes animaux et végétaux révélant ainsi des spécificités de mobilome propre à chaque espèce. Nos travaux en collaboration avec d’autres équipes ont notamment contribué à préciser le rôle de l’ARN polymérase II dans le contrôle des ET chez O. sativa et à mettre en évidence le lien entre la présence d’ADNecc viral et la réponse immunitaire chez Drosophila melanogaster.Mes travaux de thèse ouvrent des perspectives pour l’étude du mobilome, ce répertoire génomique encore largement inexploré et qui se révèle être à la fois une source d’information au niveau des mouvements des ET mais aussi de la stabilité des génomes. L’étude future des mobilomes promet d’apporter des réponses sur notre compréhension de la dynamique des génomes. / Transposable elements (TEs) are mobile genetic elements that constitute a major part of eukaryotic genomes. Host genomes have developed epigenetic mechanisms to control and prevent their proliferation. While efficiently silenced by the epigenetic machinery, they can be reactivated upon stress or at precise developmental stages. However, available methods to detect TE activity are often limited to transcriptional level or more adapted to small genomes. Today, only few TEs are known to be active and specific mechanisms controlling TEs are not well defined. 
To address this question during my phD, we developed a strategy of high throughput sequencing that detects extrachromosomal circular DNA (eccDNA) forms which reflect TE activity and genome stability. We characterised mobilomes from different organisms defined as all eccDNA in a cell. 
Our mobilome-seq technique successfully identified active TEs especially in asian rice Oryza sativa. We identified an active retrotransposon PopRice in endosperm tissue from different rice varieties. Interestingly and for the first time in plants, we detected somatic insertions from genome- wide resequencing. We combined our mobilome-seq results with a GWAS analysis to propose new PopRice regulation mechanisms. 
 In a second step, we applied our mobilome seq technique to different animal and plant organisms showing mobilome specificities from each species. Our work in collaboration with different labs help contributed to define role of RNA polymerase II in the control of TEs in O. sativa and have revealed a link between presence of eccDNA from virus and immune response in Drosophila melanogaster. 
Altogether, our mobilome-sequencing method opens the possibility to explore unexplored genomic compartment. Future mobilome analysis represents new possibilities to improve our understanding of dynamics of genomes.
54

Structural Variation Discovery and Genotyping from Whole Genome Sequencing: Methodology and Applications: A Dissertation

Zhuang, Jiali 15 September 2015 (has links)
A comprehensive understanding about how genetic variants and mutations contribute to phenotypic variations and alterations entails experimental technologies and analytical methodologies that are able to detect genetic variants/mutations from various biological samples in a timely and accurate manner. High-throughput sequencing technology represents the latest achievement in a series of efforts to facilitate genetic variants discovery and genotyping and promises to transform the way we tackle healthcare and biomedical problems. The tremendous amount of data generated by this new technology, however, needs to be processed and analyzed in an accurate and efficient way in order to fully harness its potential. Structural variation (SV) encompasses a wide range of genetic variations with different sizes and generated by diverse mechanisms. Due to the technical difficulties of reliably detecting SVs, their characterization lags behind that of SNPs and indels. In this dissertation I presented two novel computational methods: one for detecting transposable element (TE) transpositions and the other for detecting SVs in general using a local assembly approach. Both methods are able to pinpoint breakpoint junctions at single-nucleotide resolution and estimate variant allele frequencies in the sample. I also applied those methods to study the impact of TE transpositions on the genomic stability, the inheritance patterns of TE insertions in the population and the molecular mechanisms and potential functional consequences of somatic SVs in cancer genomes.
55

The Silencing of Endogenous and Exogenous Transposable Elements in Arabidopsis

Fultz, Dalen R. 03 August 2017 (has links)
No description available.
56

Molecular interactions among soybean aphids and aphid-resistant soybean

Stewart, Ashley January 2019 (has links)
No description available.
57

Population Dynamics of Transposable Elements in Leptidea sinapis

Öten, Ahmet Melih January 2022 (has links)
Although transposable elements (TEs) have been subjected to detailed study in various organisms such as humans, maize, and drosophila, this is not the case for all organisms. Despite numerous studies on the effects of TEs in the field of evolution and functional genomics, there has not been many studies yet on how much variation these elements show in populations. To address these questions, we identified TEs in Leptidea sinapis based on a newly produced high-quality genome assembly and identified novel TEs in this project. In the first step of the project, we manually curated consensus sequences of the 150 most abundant TE subfamilies. We could identify 145 of these subfamilies: two of which were non-curatable because of bad consensus sequences, three that were uncertain where they start and end, and one of the subfamilies were divided into two different subfamilies. Hence, we ended up with 146 different TE subfamilies, and the remaining part of the project was carried out using these. In the second step, we examined how the manually curated 146 subfamilies were distributed in 83 different L. sinapis individuals in the Swedish population. Before performing manual curation for our selected TEs, we looked at the TE landscape of the long-read sequenced L. sinapis genome and showed that 58.2% of the L. sinapis genome consists of TEs. In a recent study, it has been shown that 40% of L. sinapis consists of TEs. So, when compared to previous studies, our result showed that the L. sinapis genome contained more TEs than previously reported. When we made the same analysis after manual curation, we showed that this amount increased to 62.4%. The distribution of classified TEs by groups is as follows: LINE 22.6%, DNA 7.43%, SINE 4.76%, LTR 3.10%.  After creating the final TE landscape for our reference genome, we analyzed 83 different individuals collected from different regions of Sweden such as Uppland, Östergötland, Västmanland, Närke, Värmland, Dalarna, Hälsingland, Småland, Medelpad, and Västerbotten for the individual number of non-reference insertions using RelocaTE2. We observed that these 146 subfamilies showed different distributions among individuals based on their sequence coverage. We couldn’t find any correlation between the number of insertions and the latitude of locations where individuals had been collected. When we look at the total number of insertions, we realized type I transposable elements were more abundant compared to type II transposable elements. Also, we checked the percentage of covered bases per individual in our dataset and observed that individuals with greater coverage had more TE insertions. After realizing this, when we analyzed individuals from different locations with very similar coverage, we could not see a significant correlation between the number of TE insertions and the latitude of locations of butterflies from different locations. For this reason, we can say that for the most abundant 146 TE subfamilies in the reference genome, there is not a significant difference between regions of Sweden. This study contributes to a better analysis of TE content in L. sinapis, and the know-how and possible problems with technical bias for individual TE insertion studies in general.
58

Transcriptome-Wide piRNA Profiling in Human Brains for Aging Genetic Factors

Mao, Qiao, Fan, Longhua, Wang, Xiaoping, Lin, Xiandong, Cao, Yuping, Zheng, Chengchou, Zhang, Yong, Zhang, Huihao, Garcia-Milian, Rolando, Kang, Longli, Shi, Jing, Yu, Ting, Wang, Kesheng, Zuo, Lingjun, Li, Chiang-Shan R., Guo, Xiaoyun, Luo, Xingguang 01 January 2019 (has links)
OBJECTIVE: Piwi-interacting RNAs (piRNAs) represent a molecular feature shared by all nonaging biological systems, including the germline and somatic cancer stem cells, which display an indefinite renewal capacity and lifespan-stable genomic integrity and are potentially immortal. Here, we tested the hypothesis that piRNA is a critical genetic determinant of aging in humans. METHODS: Expression of transcriptome-wide piRNAs (n=24k) was profiled in the human prefrontal cortex of 12 subjects (84.9±9.5, range 68-100, years of age) using microarray technology. We examined the correlation between these piRNAs' expression levels and age, adjusting for covariates including disease status. RESULTS: A total of 9,453 piRNAs were detected in brain. Including seven intergenic and three intronic piRNAs, ten piRNAs were significantly associated with age after correction for multiple testing (|r|=0.9; 1.9×10≤p≤9.9×10). CONCLUSION: We conclude that piRNAs might play a potential role in determining the years of survival of humans. The underlying mechanisms might involve the suppression of transposable elements (TEs) and expression regulation of aging-associated genes.
59

Discovery of an expanded set of avian leukosis subgroup E proviruses in chickens using Vermillion, a novel sequence capture and analysis pipeline

Rutherford, K., Meehan, Conor J., Langille, M.G.I., Tyack, S.G., McKay, J.C., McLean, N.L., Benkel, K., Beiko, R.G., Benkel., B. 05 November 2019 (has links)
No / Transposable elements (TEs), such as endogenous retroviruses (ERVs), are common in the genomes of vertebrates. ERVs result from retroviral infections of germ-line cells, and once integrated into host DNA they become part of the host's heritable genetic material. ERVs have been ascribed positive effects on host physiology such as the generation of novel, adaptive genetic variation and resistance to infection, as well as negative effects as agents of tumorigenesis and disease. The avian leukosis virus subgroup E family (ALVE) of endogenous viruses of chickens has been used as a model system for studying the effects of ERVs on host physiology, and approximately 30 distinct ALVE proviruses have been described in the Gallus gallus genome. In this report we describe the development of a software tool, which we call Vermillion, and the use of this tool in combination with targeted next-generation sequencing (NGS) to increase the number of known proviruses belonging to the ALVE family of ERVs in the chicken genome by 4-fold, including expanding the number of known ALVE elements on chromosome 1 (Gga1) from the current 9 to a total of 40. Although we focused on the discovery of ALVE elements in chickens, with appropriate selection of target sequences Vermillion can be used to develop profiles of other families of ERVs and TEs in chickens as well as in species other than the chicken. / Financial support was provided by the EW GROUP, as well as grants from the Canada Foundation for Innovation, Canada Research Chairs Program, and the Natural Sciences and Engineering Council of Canada to RGB, and Canada Institutes of Health Research funding to MGIL and CJM.
60

Recherche d'éléments répétés par analyse des distributions de fréquences d'oligonucléotides

Provencher, Benjamin January 2009 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.

Page generated in 0.1279 seconds