Spelling suggestions: "subject:"triadin"" "subject:"triadique""
1 |
Mécanismes de formation des triades et d'adressage des protéines du complexe de relâchement du calcium / Mechanisms of triad formation and calcium release complex protein targetingSebastien, Muriel 29 November 2016 (has links)
La contraction musculaire est initiée par des relâchements massifs de calcium intracellulaire après stimulation par le motoneurone. Le couplage entre la stimulation neuronale et la libération de calcium dépend du complexe de relâchement du calcium (CRC), et est réalisé dans un compartiment particulier des cellules musculaires : la triade. Les triades sont formées par une apposition de trois systèmes membranaires, deux citernes terminales du réticulum sarcoplasmique qui encadrent un tubule transverse, qui est une invagination de la membrane plasmique. Toutes les protéines du CRC sont exclusivement localisées à la triade, cependant les mécanismes de formation des triades et d'adressage des protéines du CRC dans ce compartiment spécifique sont encore largement inconnus. Au niveau de la triade, des points de contacts réguliers avec les microtubules ont été observés, et la triadine, une protéine du CRC, a été proposée comme pouvant servir de lien entre les microtubules et les autres protéines du CRC.L'objectif de ce travail est d'étudier les mécanismes à l'origine de l'organisation des membranes de la triade, de la localisation des protéines du CRC, ainsi que l'implication des microtubules dans ces processus. Nous nous sommes intéressés au rôle de deux protéines associées aux microtubules, Climp63 et MAP6. Des travaux de microscopie ont également permis de caractériser le comportement de chimères fluorescentes de triadine exprimées dans des myotubes de souris différenciés en culture.Climp63 en association avec la triadine, forme un lien entre les triades et le réseau microtubulaire. Cependant, la relation fonctionnelle entre le réseau de microtubules et le relâchement de calcium reste complexe à envisager. Si l’étude d’un modèle animal montre clairement que l’absence de la protéine MAP6 affecte la force musculaire, il n’a pas été possible de montrer que ce défaut est sous-tendu par un dysfonctionnement des microtubules. L’étude de la mise en place des triades a révélé que les microtubules participent à cette organisation, en supportant la mobilité des triades en cours de positionnement dans la fibre musculaire. Enfin, nous avons pu montrer que l’adressage de la triadine à la triade se fait par une diffusion de la protéine au sein du RS, et une rétention dans la citerne terminale grâce à un mécanisme complexe, potentiellement indépendant de RYR1, et nécessitant à la fois les domaines lumenal et cytosolique de la protéine. / Muscle contraction is initiated by massive intracellular calcium releases after motoneuron stimulation. The coupling between neuronal stimulation and calcium release depends on the calcium release complex (CRC), and takes place in a very special compartment of muscle cells : the triad. Triads are formed by the apposition of three membrane systems, two terminal cisternae of the sarcoplasmic reticulum, on each side of a transverse tubule, which is an invagination of the plasma membrane. All CRC proteins are exclusively localized at the triads, however the mechanisms leading to triad formation, and CRC protein targeting at this special compartment are still largely unknown. At the triads, regular cross-talks with microtubules were observed, and triadin, one of the CRC protein, was proposed to serve as a link between microtubules and the other CRC proteins.The goal of this work is to study the mechanisms leading to the organization of triad membranes, and to triad CRC proteins targeting, as well as the involvement of microtubules in these processes. We focused our interest on the role of two microtubule-associated proteins, Climp63 and MAP6. Microscopy studies allowed us to characterize the behaviour of fluorescent triadin chimeras expressed in mouse myotubes, differentiated in culture.Climp63 when associated to triadin forms a link between triads and microtubules. However the functional relationship between microtubules and calcium releases remains complex to consider. Even if the study of an animal model shows clearly that the lack of MAP6 protein affects muscle force, we were not able to show that this defect depends on microtubule dysfunction. The study of triad set up revealed that microtubules participate in that organization, by sustaining triads mobility during positioning in the muscle cell. Finally we were able to show that triadin targeting to triads is done by diffusion of the protein in the SR membrane, and retention in the terminal cisternae thanks to a complex mechanism. This mechanism could be independant of RyR1, but needs the lumenal and cytosolic domains of the protein.
|
2 |
Un lien entre les triades et les microtubules dans la cellule musculaire : Rôle de la triadine et de CLIMP-63 / Link between triads and microtubules in the muscle cells : Role of triadin and the shaping protein CLIMP-63Osseni, Alexis 23 October 2015 (has links)
La contraction musculaire est provoquée par un relâchement massif de calcium à partir du reticulum sarcoplasmique (RS) des cellules musculaires. Ce relâchement de calcium réalisé par le récepteur de la ryanodine (RyR1), s'effectue dans des structures membranaires spécialisées et très organisées : les triades. Cette architecture spécifique est essentielle à l'activité correcte de RyR1. Cependant, les mécanismes moléculaires mis en jeu dans la formation et le maintien des triades ne sont pas connus. La triadine, qui est une protéine localisée dans la membrane du RS et qui est associée à RyR1, pourrait jouer un rôle dans la structure du reticulum sarcoplasmique pour permettre un relâchement de calcium efficace. L'équipe a montré que l'ablation du gène de la triadine chez la souris induisait une altération des relâchements de calcium et une modification de la forme des triades.Nous avons montré que la triadine pouvait indirectement interagir avec les microtubules et qu'elle pourrait ancrer le RS aux microtubules (Fourest-Lieuvin, J Cell Science, 2012). Par analyse en spectrométrie de masse des protéines co-immunoprécipitées avec la triadine, nous avons identifiéun nouveau partenaire de la triadine, CLIMP-63 qui pourrait être impliqué dans cette fonction. CLIMP-63 est décrite comme une protéine capable d'ancrer le reticulum aux microtubules et de maintenir la forme du reticulum endoplasmique. Nous avons ensuite confirmé son interaction avec la triadine par différentes approches dans différents modèles cellulaires. L'étude et la caractérisation de CLIMP-63 dans le muscle sont tout à fait innovantes et nous avons étudié les conséquences de l'association triadine/CLIMP-63 pour la fonction du muscle et dans la formation ou la maintenance des triades. / Muscle contraction is achieved when an efficient excitation signal at the plasma membrane triggers intracellular calcium release. This process called “excitation-contraction (E-C) coupling” relies on a macromolecular protein complex, spanning the plasma membrane and the sarcoplasmic reticulum (SR), containing the calcium channel of the SR, the ryanodine receptor (RyR1). This calcium release complex is present exclusively in highly organized membrane structures called triads. A triad is composed of two SR terminal cisternae surrounding a plasma membrane transverse-tubule.This architecture is essential to sustain the activity of the calcium channel RyR1, which is located in the membrane of SR terminal cisternae. However, little is known about the molecular mechanisms allowing the formation and maintenance of SR terminal cisternae. Triadin is a member of this complex, present in the SR membrane and interacting with RyR1. Deletion of the triadin gene leads to partial disorganisation of SR membranes in skeletal muscles, with abnormal orientation of part of the triads. Triadin could play a role in the structure of sarcoplasmic reticulum to allow efficient E-C coupling. We have shown that triadin could indirectly interact with the microtubules, and therefore anchor the sarcoplasmic reticulum to the microtubule network (Fourest-Lieuvin, J Cell Science, 2012). Using mass spectrometry analysis of proteins co-immunoprecipitated with triadin, we have identified a new partner of triadin, CLIMP-63 which could be involved in this function. CLIMP-63 is a shaping protein able to mediate the anchoring of the reticulum to microtubules and to maintain the shape of endoplasmic reticulum. We have dissected the interacting domains between CLIMP-63 and triadin, and study the consequences of this association for muscle function, and triad formation or maintenance.
|
3 |
Etude et caractérisation des gènes impliqués dans la tachycardie ventriculaire polymorphe catécholaminergique / Research and characterization of genes implicated in the catecholaminergic ventricular tachycardiaRoux-Buisson, Nathalie 02 April 2012 (has links)
La Tachycardie Ventriculaire Polymorphe Catécholaminergique (TVPC) est une pathologie rythmique héréditaire rare et sévère, responsable de mort subite chez le sujet jeune. Les mutations des gènes RYR2 et CASQ2 sont associées respectivement à une transmission autosomique dominante et récessive de la maladie. Le canal calcique RyR2 et la protéine chélatrice du calcium Casq2 sont situés dans le réticulum sarcoplasmique (RS) où ils participent au complexe de relâchement calcique (CRC), essentiel à l'homéostasie calcique cardiaque. L'analyse de RYR2 et CASQ2 chez 214 probands ayant présenté une TVPC nous a permis d'identifier respectivement des mutations chez 75 et 11 probands. Deux cas de mosaïques germinales et somatiques ont été identifiés dans le gène RYR2. Deux mutations d'épissage du gène CASQ2 ont été validées à l'aide de minigènes. Chez 97 patients négatifs pour RYR2 et CASQ2, nous avons décidé de rechercher des mutations de trois protéines du CRC (la triadine, la junctine et FKBP12.6) en séquençant les gènes correspondants. Nous n'avons retrouvé aucune mutation de la junctine, ni de FKBP12.6. En revanche, nous avons identifié trois mutations de la triadine: une micro-délétion et une mutation non-sens entraînant un codon stop prématuré, ainsi qu'une variation faux-sens, dont la caractérisation à l'aide de modèle animal et cellulaire a montré qu'elle entraînait une dégradation massive de la protéine. Les mutations du gène TRDN seraient associées à une absence de triadine entraînant une dysfonction du CRC, à l'origine des arythmies observées. En conclusion, nos résultats confirment que RYR2 est le gène majeur impliqué dans la TVPC, CASQ2 étant rarement impliqué; et nous rapportons, pour la première fois, des mutations du gène TRDN en pathologie humaine, associée à une forme autosomique rare de TVPC. / Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a rare and severe inherited arrhythmogenic disorder, responsible for sudden death in young patients. It is a genetically heterogenous pathology with an autosomal dominant form associated with mutations of the RYR2 gene, and a recessive form associated with mutations of the CASQ2 gene. The ryanodine receptor RyR2 is a Ca2+ channel, and the calsequestrin Casq2 is the major calcium storage protein, located in the sarcoplasmic reticulum of the cardiomyocytes. They belong to the calcium release complex (CRC) that plays a central role in excitation-contraction coupling. In this work, we report the identification of RYR2 and CASQ2 mutations in 75 and 11 CPVT probands, respectively. We identified two cases of germline and somatic mosaicism in RYR2. Two splicing mutations of CASQ2 have been validated using a splicing minigene assay. We searched for mutations among 97 CPVT probands, negative for RYR2 and CASQ2, in three candidate genes: TRDN, ASPH and FKBP1B, encoding three proteins of the CRC. We did not identify any mutation of ASPH and FKBP1B genes. However, we found three mutations in the TRDN gene, encoding the cardiac triadin: a microdeletion, a nonsense mutation, both leading to a premature stop codon, and a missense mutation. We demonstrated that the missense mutation induces a drastic reduction of the protein in cellular and animal models. All the three mutations would thus be associated with the absence of triadin, leading to dysfunction of the CRC, and arythmias. In conclusion, our results confirm that RYR2 is the major gene implicated in CPVT, and CASQ2 rarely implicated. Moreover, we report mutations of the TRDN gene for the first time in pathology, as a third gene associated with a rare autosomal recessive form of CPVT.
|
4 |
Rôle de la triadine dans le développement de l'insuffisance cardiaque / Role of triadin during heart failureMarck, Pauline 28 November 2014 (has links)
L’insuffisance cardiaque (IC) est une cause majeure de mortalité dans les pays industrialisés. Ce syndrome est le résultat de nombreuses maladies cardiaques qui induisent dans un premier temps un remodelage adaptatif du myocarde : l’hypertrophie du ventricule gauche (HVG). Dans le cœur, le calcium libéré à partir du réticulum sarcoplasmique (RS) est à l’origine de la contractilité. Ce mécanisme est contrôlé par un macro-complexe moléculaire, composé du récepteur de la ryanodine (RyR2), et de protéines stabilisatrices associées dont la junctine (JCN), la calséquestrine (CSQ2), et la triadine (Trd). Ces dernières années, des dysfonctionnements de ce complexe, par des relâchements aberrants de Ca2+ du RS (vu comme des fuites de Ca2+ hors du RS) ont été remarqué au cours de l’IC, conduisant à une HVG associée à une dysfonction contractile et à la survenue d’arythmies cardiaques létales. De très nombreuses études se sont intéressées aux protéines principales du RS, telles que RyR2 et CSQ2, mais peu de données sont disponibles sur le rôle de Trd, protéine considérée comme mineure en physiopathologie cardiaque. Afin d’étudier son rôle dans le cœur, notre travail s’est articulé autour de trois modèles de pathologie cardiaque : 1-une surcharge de pression par une sténose de l’aorte transverse (TAC), 2-une diffusion de catécholamines (isoprotérénol, Iso) par mini-pompe osmotique et 3-une IC chronique par un infarctus du myocarde (IM), chez des souris dont le gène de la triadine a été invalidé (KO Trd). En réponse à une TAC ou à l’ISO, les animaux développent une HVG plus importante que les souris WT. Suite à une TAC, cette HVG est supérieure et excentrique et s’accompagne d’une dysfonction cardiaque comparativement aux animaux sauvages. Suite à un IM, les souris KO Trd présentent une mortalité accrue post-chirurgie. L’accroissement de cette mortalité accrue résiderait dans l’augmentation significative d’arythmies ventriculaires sévères (tachycardies ventriculaires, TV) chez ces souris suite à une stimulation catécholaminergique, pouvant être la conséquence d’une augmentation des fuites de Ca2+ hors du RS. Nous avons également observé qu’en réponse à la TAC la réexpression du gène TRDN avec un adénovirus AAV9 dans notre modèle KO Trd permet le maintien de la fonction cardiaque et de prévenir le développement de l’HVG. Au final, ces travaux montrent que l’absence de la triadine accélère la transition vers l’IC en modulant à la fois l’HVG et la dysfonction contractile associée mais également la survenue d’arythmies ventriculaires létales. / Heart failure (HF) is a serious public health issue with a growing prevalence in industrialized countries. This syndrome results from several cardiac diseases which begin with an adaptative myocardial remodeling: left ventricular hypertrophy (LVH). In heart, contractility depends on calcium release from sarcoplasmic reticulum (SR). This release is controlled by a macro-molecular complex, composed by ryanodine receptor (RyR2) and its associated regulatory protein junctin (JCN), calsequestrin (CSQ2) and triadin (Trd). During the past years, alterations of this complex by disturbed calcium release outside SR (as « sparks ») was often observed during the development of HF, being associated with LVH, dysfunction and fatal ventricular arrhythmias. Most studies were focused on RyR2 and CSQ2 function but few data are available regarding the role of Trd, considered until now having minor role in cardiac physiopathology. To elucidate its role, we realized 3 cardiac pathological experimental models on mice with triadin gene invalidation (KO Trd): 1- a pressure overload with transversal aorta constriction (TAC) 2-a chronic infusion of catecholamines (Isoproterenol, Iso) with osmotic minipumps and 3- a chronic HF with myocardial infarction (MI). In response to TAC or Iso, KO mice developed a greater LVH compared to wild-type mice. Also, with TAC, KO mice show an eccentric LVH associated with a severe cardiac dysfunction, as compared to wild-type mice. After MI, we observed a greater mortality post-surgery in KO Trd mice. This prevalence may be due to increasing of severe ventricular arrhythmias (ventricular tachycardia, VT) after catecholaminergic stimulation. This observation could be a consequence of increasing number of « sparks », and thus an increased calcium release during diastole. More interestingly, delivery of TRDN gene using AAV9 in KO mice, prevent adverse remodeling and the associated cardiac dysfunction following 28 days TAC surgery. To conclude, this work shows that the lack of triadin accelerate the transition towards heart failure, acting on LVH , contractile dysfunction, and the occurrence of lethal ventricular arrhythmias.
|
5 |
Etude et caractérisation des gènes impliqués dans la tachycardie ventriculaire polymorphe catécholaminergiqueRoux-Buisson, Nathalie 02 April 2012 (has links) (PDF)
La Tachycardie Ventriculaire Polymorphe Catécholaminergique (TVPC) est une pathologie rythmique héréditaire rare et sévère, responsable de mort subite chez le sujet jeune. Les mutations des gènes RYR2 et CASQ2 sont associées respectivement à une transmission autosomique dominante et récessive de la maladie. Le canal calcique RyR2 et la protéine chélatrice du calcium Casq2 sont situés dans le réticulum sarcoplasmique (RS) où ils participent au complexe de relâchement calcique (CRC), essentiel à l'homéostasie calcique cardiaque. L'analyse de RYR2 et CASQ2 chez 214 probands ayant présenté une TVPC nous a permis d'identifier respectivement des mutations chez 75 et 11 probands. Deux cas de mosaïques germinales et somatiques ont été identifiés dans le gène RYR2. Deux mutations d'épissage du gène CASQ2 ont été validées à l'aide de minigènes. Chez 97 patients négatifs pour RYR2 et CASQ2, nous avons décidé de rechercher des mutations de trois protéines du CRC (la triadine, la junctine et FKBP12.6) en séquençant les gènes correspondants. Nous n'avons retrouvé aucune mutation de la junctine, ni de FKBP12.6. En revanche, nous avons identifié trois mutations de la triadine: une micro-délétion et une mutation non-sens entraînant un codon stop prématuré, ainsi qu'une variation faux-sens, dont la caractérisation à l'aide de modèle animal et cellulaire a montré qu'elle entraînait une dégradation massive de la protéine. Les mutations du gène TRDN seraient associées à une absence de triadine entraînant une dysfonction du CRC, à l'origine des arythmies observées. En conclusion, nos résultats confirment que RYR2 est le gène majeur impliqué dans la TVPC, CASQ2 étant rarement impliqué; et nous rapportons, pour la première fois, des mutations du gène TRDN en pathologie humaine, associée à une forme autosomique rare de TVPC.
|
6 |
Effets fonctionnels de mutations de gènes codant des protéines du complexe de relâchement du calcium impliqués dans les pathologies du muscle strié / Mutations of calcium release complex proteins in squeletal and cardiac musclesCacheux, Marine 03 October 2012 (has links)
La contraction des muscles striés est sous la dépendance du Complexe de Relâchement du Calcium (CRC). Ce complexe protéique est constitué principalement de deux canaux calciques, le récepteur des dihydropyridines, un canal sensible au voltage localisé dans la membrane des tubules-T et le récepteur de la ryanodine (RyR) situé dans la membrane du RS. Le CRC comprend également de nombreuses protéines régulatrices comme la triadine, la calséquestrine, la junctine et FKBP. Des mutations dans les gènes codant les protéines du CRC conduisent à des pathologies rares et souvent sévères. Cette thèse porte sur l'étude des mécanismes physiopathologiques induits par quelques unes de ces mutations pour décrypter les mécanismes pathologiques mis en œuvre mais également pour comprendre le fonctionnement global du CRC dans les muscles squelettique et cardiaque. La première partie de cette étude concerne RYR1, le gène codant l'isoforme squelettique du RyR qui est une cible importante de mutations chez des patients atteints de myopathies congénitales à cores. L'effet fonctionnel de ces mutations, réparties sur toute la séquence de RYR1, est peu connu. Ces mutations pourraient modifier la fonction canal de RyR1 mais également son adressage à la triade ou sa régulation par d'autres protéines du CRC. Parmi ces hypothèses, la modification de la localisation de RyR1 et sa régulation par une protéine régulatrice (la cavéoline-3) ont été révélées par l'étude de deux mutations de RyR1. La deuxième partie de cette étude concerne la tachycardie ventriculaire polymorphe catécholaminergique (TVPC), une pathologie liée à des défauts du CRC cardiaque, pour laquelle des recherches de mutations sont effectuées sur l'isoforme cardiaque du RyR, RYR2, puis dans les autres protéines du complexe. Nous avons identifié au laboratoire les premières mutations dans le gène de la triadine chez un de ces patients. L'impact d'une de ces mutations sur le fonctionnement du complexe a été étudié et nous avons pu caractériser le mécanisme physiopathologique mis en œuvre et conduisant à la TVPC chez ces patients. / The calcium release complex (CRC) plays a central role in both skeletal and cardiac muscle contraction. The composition of the complex is quite similar in both tissues, and differs only by tissue specific isoforms. The core of the complex is composed of the dihydropyridines receptor, a voltage sensor channel of the T-tubule and the ryanodine receptor, the sarcoplasmic reticulum calcium channel. A number of proteins are associated to this calcium channel like calsequestrin, triadin, junction and FKBP. Mutations in the skeletal CRC are responsible for rare and often severe diseases. This thesis work focuses on the study of physiopathological mechanisms induced by some of these mutations to decipher pathological mecanisms but also to understand the overall CRC functioning in skeletal and cardiac muscles. The first part of this study concerns RYR1, the skeletal RyR isoform coding gene. This gene is mostly the target of mutations resulting in core myopathies. The functional effect of these mutations spred on the entire RYR1 sequence is little known. These mutations could directly alter the calcium channel function but also its targeting to the triad or its regulation by other CRC proteins. Among these hypotheses, the modification of RyR1 localisation and regulation by a protein, Caveolin-3, have been highlighted with the study of two RyR1 mutations. The second part of this study concerns the catecholaminergic polymorphic ventricular tachycardia (CPVT), a rare fatal arrhythmia caused in part by mutations in RYR2 and CASQ2, both belonging to the cardiac CRC,. Recently, we have identified the first mutations in the human triadin gene, TRDN, in a CPVT patient. The goal of this project was to study the molecular and physiological consequences of one of these TRDN mutations allowing the analysis of the pathological mechanisms of this disease, but also a better understanding of the normal function of the cardiac CRC.
|
7 |
Fonctions des triadines dans le muscle squelettique. Caractérisation de l'isoforme Trisk 32.Oddoux, Sarah 23 October 2009 (has links) (PDF)
La triadine est une famille de protéines du muscle squelettique. Quatre isoformes de la triadine ont été clonées: Trisk 95, Trisk 51, Trisk 49 et Trisk 32. Ce sont des protéines transmembranaires du reticulum sarcoplasmique (RS). Trisk 95 et Trisk 51 sont localisées dans la triade où elles sont associées au récepteur de la ryanodine (RyR), un canal calcique. Trisk 49 et Trisk 32 sont localisées dans le RS longitudinal. Il a été montré que Trisk 95 régule les relâchements de Ca2+ du RyR. L'objectif de ce travail de thèse a été d'étudier les fonctions des triadines dans le muscle squelettique grâce à différentes approches et techniques complémentaires. Dans un premier temps, Trisk 95 et de Trisk 51 ont été étudiées par surexpression in vivo dans les muscles de souris. La caractérisation de ces muscles a permis de mettre en évidence l'association du RyR avec la cavéoline, une protéine de la membrane plasmique. Dans un second temps, la fonction de Trisk 32 a été étudiée dans le muscle squelettique. L'étude précise de sa localisation a permis de montrer qu'elle est localisée dans la triade, dans le RS longitudinal, et à proximité des mitochondries. Des expériences de co-immunoprécipitation ont révélé qu'elle est associée avec le RyR et avec le récepteur de l'IP3. De par ses partenaires, Trisk 32 semble jouer un rôle dans la régulation de nombreux mécanismes impliquant le Ca2+. Enfin, le gène de la triadine a été invalidé chez la souris. Cette souris KO triadine présente une faiblesse musculaire et des défauts dans l'ultrastructure de la triade. Ces résultats indiquent qu'en plus de sa fonction de régulation des relâchements de Ca2+ la triadine pourrait avoir un rôle structural.
|
Page generated in 0.0599 seconds