Spelling suggestions: "subject:"triangulation périodiques""
1 |
Triangulating Point Sets in Orbit SpacesCaroli, Manuel 10 December 2010 (has links) (PDF)
Dans cette thèse, nous étudions les triangulations définies par un ensemble de points dans des espaces de topologies différentes. Nous proposons une définition générale de la triangulation de Delaunay, valide pour plusieurs classes d'espaces, ainsi qu'un algorithme de construction. Nous fournissons une implantation pour le cas particulier du tore plat tridimensionnel. Ce travail est motivé à l'origine par le besoin de logiciels calculant des triangulations de Delaunay périodiques, dans de nombreux domaines dont l'astronomie, l'ingénierie des matériaux, le calcul biomédical, la dynamique des fluides, etc. Les triangulations périodiques peuvent être vues comme des triangulations du tore plat. Nous fournissons une définition et nous développons un algorithme incrémentiel efficace pour calculer la triangulation de Delaunay dans le tore plat. L'algorithme est adapté de l'algorithme incrémentiel usuel dans R^d. Au contraire des travaux antérieurs sur les triangulations périodiques, nous évitons de maintenir plusieurs copies périodiques des points, lorsque cela est possible. Le résultat fourni par l'algorithme est toujours une triangulation du tore plat. Nous présentons une implantation de notre algorithme, à présent disponible publiquement comme un module de la bibliothèque d'algorithmes géométriques CGAL. Nous généralisons les résultats à une classe plus générale d'espaces quotients plats, ainsi qu'à des espaces quotients de courbure constante positive. Enfin, nous considérons le cas du tore double, qui est un exemple de la classe beaucoup plus riche des espaces quotients de courbure négative constante.
|
Page generated in 0.1333 seconds