1 |
NMR investigation into the therapeutic potential of troponinRobertson, Ian Michael Unknown Date
No description available.
|
2 |
Influence of the thin filament calcium activation on muscle force production and rate of contraction in cardiac muscleNorman, Catalina 10 July 2007 (has links)
No description available.
|
3 |
Investigating the molecular mechanisms of cooperative tension generation in skeletal and cardiac muscle by altering acto-myosin interactions and engineering troponin C calcium binding kinetics /Kreutziger, Kareen L. January 2007 (has links)
Thesis (Ph. D.)--University of Washington, 2007. / Vita. Includes bibliographical references (leaves 152-168).
|
4 |
Mechanical properties of myocardium following cardiomyocyte transplantation into infarcted hearts and investigations of the role of troponin C Ca2+ binding kinetics in skeletal muscle contraction /Moreno-Gonzalez, Alicia, January 2007 (has links)
Thesis (Ph. D.)--University of Washington, 2007. / Vita. Includes bibliographical references (leaves 143-159).
|
5 |
The Role of Troponin C in the HeartLittle, Sean Carl 29 August 2012 (has links)
No description available.
|
6 |
Modeling the response of troponin C to calcium in increasingly complex systemsSiddiqui, Jalal K. January 2016 (has links)
No description available.
|
7 |
Effect of the Ca2+ Binding Properties of Troponin C On Skeletal and Cardiac Muscle Force DevelopmentLee, Ryan S. 30 August 2010 (has links)
No description available.
|
8 |
Challenging Current Paradigms Related to Cardiomyopathies: Are Changes in the Calcium Sensitivity of Myofilaments Containing Mutations Good Predictors of the Phenotypic Outcomes?Dweck, David 24 November 2008 (has links)
Three novel mutations (G159D, L29Q and E59D/D75Y) in cardiac troponin C (CTnC) associate their clinical outcomes with a given cardiomyopathy. Current paradigms propose that sarcomeric mutations associated with dilated cardiomyopathy (DCM) decrease the myofilament calcium sensitivity while those associated with hypertrophic (HCM) cardiomyopathy increase it. Therefore, we incorporated the mutant CTnCs into skinned cardiac muscle in order to determine if their effects on the calcium regulation of tension and ATPase activity coincide with the current paradigms and phenotypic outcomes. This required the development of new calculator programs to solve complex ionic equilibria to more accurately buffer and expand the free calcium range of our test solutions. In accordance with the DCM paradigms, our result show that G159D and E59D/D75Y CTnC decrease the myofilament calcium sensitivity and force generating capabilities which would likely increase the rate of muscle relaxation and weaken the contractile force of the myocardium. Alternatively, the lack of myofilament change from L29Q CTnC (associated with HCM) may explain why the only proband is seemingly unaffected. Notably, the changes in the calcium sensitivity of tension (in fibers) do not necessarily occur in the isolated CTnC and vice versa. These counter-intuitive findings are justified through a transition in calcium affinity occurring at the level of cardiac troponin (CTn) and higher, implying that the true effects of these mutations become apparent as the hierarchal level of the myofilament increases. Despite these limitations, the regulated thin filament (RTF) retains its role as the calcium regulatory unit and best indicates a mutation's ability to sensitize (+) or desensitize (-) the muscle to calcium. Since multiple forms of cardiomyopathies exist, the identification of new drugs that sensitize (+) or desensitize (-) the calcium sensitivity could potentially reverse (+ or -) these aberrant changes in myofilament sensitivity. Therefore, we have developed an RTF mediated High Throughput Screening assay to identify compounds in libraries of molecules that can specifically modulate the calcium sensitivity of cardiac contraction. The knowledge gained from these studies will help us and others to uncover new pharmacological agents for the investigation and treatments of cardiomyopathies, hypertension and other forms of cardiovascular diseases.
|
Page generated in 0.0391 seconds