• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 6
  • 4
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 32
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Role endometriózy v rozvoji dyspareunie a algopareunie. / The role of endometriosis in the development of dyspareunia and algopareunia.

Fiala, Luděk January 2019 (has links)
Endometriosis is defined as the presence of endometrial cells outside the uterine cavity. The underlying symptom is pain, endometriosis is often associated with primary or secondary sterility, and it is assumed to be involved in the development of female dyspareunia and algopareunia. There are many theories regarding the cause of the disease, however, none of them affects the complex state of the disease which occurs in the population according to statistics in 10-15 % of women. In women with a diagnosis of sterility and infertility, the incidence of endometriosis is described in more than 40 %. Also, more than 50 % of women describe the most diverse forms of dyspareunia and algopareunia that affect not only women's own lives but also their relationships. The illness thus becomes important not only from a purely medical point of view but also from a psychosocial point of view. It should be noted that there is currently no known specific laboratory marker to diagnose endometriosis. Likewise, there is no unambiguous solution within the therapy, whether it is conservative, surgical, or combined. An important fact is that endometriosis is diagnosed with a considerable delay, according to statistics; it takes up to 11 years from the discovery of the first, often indefinite symptoms, to the unequivocal...
22

Modeling of Hybrid STATCOM in PSSE

Mikwar, Abulaziz January 2017 (has links)
Flexible AC Transmission Systems (FACTS) have the ability of voltage supportand increase transmission capacity. In order to specify a FACTS devicethat is performing according to expectations in a network, a set of studiesand network analyses must be performed. Part of these studies are done usingpower system analysis programs such as PSS®E, which is a planning toolsimulating large power systems in phasor domain using RMS values. Theseplanning tools are used for evaluating stability and reinforcement needs ina power system. The results play a vital role in investment decisions inthe power system. FACTS devices are modeled in PSS®E using a programminglanguage called FORTRAN. It is important to model FACTS devicesaccurately to avoid misleading results. In this Master thesis, STATCOMand Hybrid-STATCOM models are proposed and programmed accordingto ABB’s control strategy. The models are tested in PSS®E and verifiedagainst detailed models in PSCAD. Also, the models are compared againstother industry wide spread generic models. / System inom produktgruppen FACTS (Flexible AC Transmission Systems)har m¨ojligheten att st¨odja sp¨anning och h¨oja ¨overf¨oringskapacitet p°a existerandeledningar. F¨or att kunna specificera en FACTS-anl¨aggning sombeter sig som f¨orv¨antat i ett eln¨at beh¨ovs ett antal studier och n¨atanalyserutf¨oras. Delar av dessa studier ¨ar gjorda genom att anv¨anda verktyg f¨orkraftsystemanalys som t.ex. PSS®E, som ¨ar ett verktyg f¨or n¨atplaneringd¨ar fasvektorer och RMS-v¨arden anv¨ands i ber¨akningarna. Dessa verktyganv¨ands f¨or att evaluera stabilitet och utbyggnadsbehov i eln¨atet. Resultatenfr°an verktygen spelar en vital roll i investeringsbeslut i ett eln¨at.FACTS-system modelleras i PSS®E med hj¨alp av programmeringsspr°aketFORTRAN. Det ¨ar viktigt att anv¨anda korrekta modeller f¨or att undvikamissledande resultat. I denna Master-uppsats f¨oresl°as och utvecklasSTATCOM och Hybrid-STATCOM modeller i enlighet med ABBs kontrollstrategi.Modellerna testas i PSS®E och verifieras mot detaljerade modelleri PSCAD. Modellerna j¨amf¨ors ¨aven mot andra generiska modeller som ¨araccepterade och spridda ¨over branschen i stort.
23

Healthcare Provider Recognition of Pregnancy Related Risks and Management Considerations in Patients with Tuberous Sclerosis Complex

Rose, Meredith 02 June 2023 (has links)
No description available.
24

Rôle de l’altération des récepteurs de NMDA dans l’épilepsie associée à la Sclérose Tubéreuse de Bourneville étudié sur un modèle animal et le tissu humain / The role of NMDA receptors alteration in the epilepsy related to Tuberos Sclerosis Complex studied on the animal model and human tissue

Gataullina, Svetlana 27 January 2015 (has links)
La sclérose tubéreuse de Bourneville (STB) est une maladie génétique et multi-systémique à transmission autosomique dominante due à des mutations d’un gène TSC1 ou TSC2 qui codent respectivement pour hamartine et tuberine ayant une action inhibitrice sur la voie de signalisation mTOR. L’épilepsie précoce et pharmacorésistante est la manifestation neurologique la plus fréquente et la plus délétère de la STB. Elle débute souvent dans la première année de vie par des spasmes infantiles qui évoluent avec l’âge et en absence de traitement vers des crises toniques ou tonico-cloniques. Bien que les crises soient supposées être générées dans des tubers corticaux, les mécanismes de l’épilepsie ne sont pas bien élucidés et le traitement reste souvent inefficace. Des études morphologiques ont montré une altération de l’expression ARNm des récepteurs au glutamate dans les cellules géantes et les neurones dysplasiques des tubers, mais leur implication fonctionnelle restait à montrer. Les différentes sous-unités NMDA ont une expression âge-dépendante et région-spécifique, les plus grands changements survenant au début de la vie quand l’épilepsie de la STB apparaît. Ce travail avait pour but d’étudier à l’aide de méthodes électrophysiologiques in vitro et in vivo l’expression fonctionnelle des sous-unités NMDA aberrantes et de déterminer leur rôle dans l’épileptogènese chez les souris hétérozygotes Tsc1+/- et sur le tissu humain STB post-opératoire. Nous avons pu démontrer que : i) Les souris hétérozygotes pour le gène Tsc1 sont spontanément épileptiques in vivo et in vitro dans une courte fenêtre dévelopmentale de P9 à P18. ii) Elles présentent une altération d’expression des récepteurs NMDA couche-spécifique et mTOR dépendante avec une surexpression des sous-unités GluN2C/D dans la couche 4 et 2/3 et GluN2B dans les couches 2/3. Cette expression anormale est prévenue par l’administration d’un inhibiteur de la voie mTOR, la rapamycine. iii) Les mêmes altérations d’expression des récepteurs NMDA, sont montrées sur les tissus post-opératoires, non seulement de tubers de STB mais aussi des dysplasies corticales focales (DCF), ces deux malformations ayant des similarités étiologiques et physiopathologiques. iv) La RT-PCR quantitative confirme une expression excessive de GluN2C dans le cortex de souris Tsc1+/- et sur le tissu humain des tubers et DCF. v) Les décharges épileptiques chez la souris Tsc1+/- sont générées dans la couche granulaire 4 du cortex avant de se propager vers les couches superficielles et les couches profondes, empruntant ainsi les microcircuits corticaux. vi) L’expression excessive de la sous-unité GluN2C dans le cortex contribue à l’hyperexcitabilité neuronale chez la souris Tsc1+/- et sur des tissus humains de tubers et de DCF puisque les crises et les décharges sont bloquées par les antagonistes sélectifs de GluN2C/D. vii) Les crises chez la souris Tsc1+/- suivent une séquence âge-dépendante évoluant du type «spasms-like» vers «tonic-clonic like», rappelant celle de l’épilepsie humaine, avec deux pics de haute incidence de crises à P13 et P16 correspondant chez l’homme respectivement l’âge des spasmes infantiles et celui des crises toniques. L’évolution avec l’âge du délai de propagation inter-hémisphérique pourrait contribuer à ce changement de types de crises. Ces résultats montrent donc pour la première fois qu’une happloinsuffisance pour le gène Tsc1 chez les souris Tsc1+/- sans tubers suffit à produire une altération de l’expression des récepteurs NMDA de manière mTOR dépendante et contribuer ainsi à l’épileptogènese dans la STB. La souris Tsc1+/- est le premier modèle génétique sans anomalies morphologiques présentant une épilepsie spontanée qui évolue des spasmes vers des crises toniques et tonico-cloniques. Néanmoins cette épilepsie diffère de l’épilepsie humaine de la STB par l’absence de crises focales et de pharmacorésistance, ce qui pourrait être expliqué par l’absence de tubers chez la souris Tsc1+/-. (...) / Tuberous sclerosis complex (TSC) is a genetic multisystemic disease with autosomal dominant transmission due to mutations in a gene TSC1 or TSC2 respectively which encode hamartin and tuberin proteins having an inhibitory action on the mTOR signaling pathway. Early refractory epilepsy is the most common and most deleterious neurological manifestation. The epilepsy often begins in the first year of life by infantile spasms that change in the lack of treatment to tonic or tonic-clonic seizures in age-dependent manner. Although seizures are thought to be generated in cortical tubers, epilepsy mechanisms are not well understood and treatment is often ineffective. Morphological studies showed the altered expression of glutamate receptor mRNA in the giant cells and dysplastic neurons of tubers, but their functional involvement remains unknown. The different NMDA subunits have an age-dependent and region-specific expression, the greatest changes occurring early in life when the TSC epilepsy appears. This work aimed to study the functional expression of aberrant NMDA subunits expression and their role in the epileptogenesis in heterozygous Tsc1+/- mice and post-surgical human tissue of TSC patients using in vitro and in vivo electrophysiological methods. The study reveal that: i) Heterozygous tuber-free Tsc1+/- mice show spontaneous epilepsy in vivo and in vitro in a short developmental window from P9 to P18. ii) These mice exhibit an altered NMDA receptor expression in mTOR dependent and layer-specific manner with GluN2C/D subunits overexpression in layers 4 and 2/3, and GluN2B ovexpression in layers 2/3. This abnormal NMDA receptors expression is prevented by the administration of an mTOR inhibitor, rapamycin. iii) The same alterations of NMDA receptors’ expression are shown in post-surgical tissues not only in tubers from TSC patients, but also in focal cortical dysplasia (FCD), these two malformations sharing etiological and pathophysiological similarities. iv) Quantitative RT-PCR confirms the excessive GluN2C subunit expression in Tsc1+/- mouse cortex and human tissue of tubers and DCF. v) Epileptic discharges in Tsc1+/- mice are generated in the granular layer 4 of the cortex before spreading to the superficial and then to deep layers, thus borrowing the cortical microcircuits. vi) Excessive expression of GluN2C subunit in the cortex contributes to neuronal hyperexcitability in Tsc1+/- mice, as well as in human tubers and DCF tissues, since epileptic discharges are blocked by selective GluN2C/D antagonists. vii) Seizures in Tsc1+/- mice follow the age-dependent sequence, evolving from "spasms-like" to "tonic-clonic like" thus reminding the human epilepsy, with two peaks of highest seizure incidence at P13 and P16 corresponding respectively to age of infantile spasms and of tonic seizures in human. The age-dependent evolution of interhemispheric propagation delay could contribute to this change in seizure type. These results show for the first time that TSC1 happloinsuffisancy in tuber-free Tsc1+/- mice is sufficient to produce an alteration in NMDA receptor expression in an mTOR dependent manner, and thus contributes to epileptogenesis in TSC. The Tsc1+/- mouse line is the first genetic model of TSC without morphological abnormalities presenting with early spontaneous seizures which evolves from “spasms-like” to “tonic-clonic like” seizures. However, the epilepsy in Tsc1+/- mice differs from human TSC epilepsy by the absence of focal seizures and of drug-resistance. Both could be explained by the lack of tubers in the Tsc1+/- mice. It remains to determine whether the expression of GluN2C subunit is also transitional in Tsc1+/- mice and whether other factors contribute to determine the age-dependent epilepsy. This study opens new therapeutic perspectives of TSC epilepsy targeting GluN2C subunit of NMDA receptors.
25

Rôle de l’altération des récepteurs de NMDA dans l’épilepsie associée à la Sclérose Tubéreuse de Bourneville étudié sur un modèle animal et le tissu humain / The role of NMDA receptors alteration in the epilepsy related to Tuberos Sclerosis Complex studied on the animal model and human tissue

Gataullina, Svetlana 27 January 2015 (has links)
La sclérose tubéreuse de Bourneville (STB) est une maladie génétique et multi-systémique à transmission autosomique dominante due à des mutations d’un gène TSC1 ou TSC2 qui codent respectivement pour hamartine et tuberine ayant une action inhibitrice sur la voie de signalisation mTOR. L’épilepsie précoce et pharmacorésistante est la manifestation neurologique la plus fréquente et la plus délétère de la STB. Elle débute souvent dans la première année de vie par des spasmes infantiles qui évoluent avec l’âge et en absence de traitement vers des crises toniques ou tonico-cloniques. Bien que les crises soient supposées être générées dans des tubers corticaux, les mécanismes de l’épilepsie ne sont pas bien élucidés et le traitement reste souvent inefficace. Des études morphologiques ont montré une altération de l’expression ARNm des récepteurs au glutamate dans les cellules géantes et les neurones dysplasiques des tubers, mais leur implication fonctionnelle restait à montrer. Les différentes sous-unités NMDA ont une expression âge-dépendante et région-spécifique, les plus grands changements survenant au début de la vie quand l’épilepsie de la STB apparaît. Ce travail avait pour but d’étudier à l’aide de méthodes électrophysiologiques in vitro et in vivo l’expression fonctionnelle des sous-unités NMDA aberrantes et de déterminer leur rôle dans l’épileptogènese chez les souris hétérozygotes Tsc1+/- et sur le tissu humain STB post-opératoire. Nous avons pu démontrer que : i) Les souris hétérozygotes pour le gène Tsc1 sont spontanément épileptiques in vivo et in vitro dans une courte fenêtre dévelopmentale de P9 à P18. ii) Elles présentent une altération d’expression des récepteurs NMDA couche-spécifique et mTOR dépendante avec une surexpression des sous-unités GluN2C/D dans la couche 4 et 2/3 et GluN2B dans les couches 2/3. Cette expression anormale est prévenue par l’administration d’un inhibiteur de la voie mTOR, la rapamycine. iii) Les mêmes altérations d’expression des récepteurs NMDA, sont montrées sur les tissus post-opératoires, non seulement de tubers de STB mais aussi des dysplasies corticales focales (DCF), ces deux malformations ayant des similarités étiologiques et physiopathologiques. iv) La RT-PCR quantitative confirme une expression excessive de GluN2C dans le cortex de souris Tsc1+/- et sur le tissu humain des tubers et DCF. v) Les décharges épileptiques chez la souris Tsc1+/- sont générées dans la couche granulaire 4 du cortex avant de se propager vers les couches superficielles et les couches profondes, empruntant ainsi les microcircuits corticaux. vi) L’expression excessive de la sous-unité GluN2C dans le cortex contribue à l’hyperexcitabilité neuronale chez la souris Tsc1+/- et sur des tissus humains de tubers et de DCF puisque les crises et les décharges sont bloquées par les antagonistes sélectifs de GluN2C/D. vii) Les crises chez la souris Tsc1+/- suivent une séquence âge-dépendante évoluant du type «spasms-like» vers «tonic-clonic like», rappelant celle de l’épilepsie humaine, avec deux pics de haute incidence de crises à P13 et P16 correspondant chez l’homme respectivement l’âge des spasmes infantiles et celui des crises toniques. L’évolution avec l’âge du délai de propagation inter-hémisphérique pourrait contribuer à ce changement de types de crises. Ces résultats montrent donc pour la première fois qu’une happloinsuffisance pour le gène Tsc1 chez les souris Tsc1+/- sans tubers suffit à produire une altération de l’expression des récepteurs NMDA de manière mTOR dépendante et contribuer ainsi à l’épileptogènese dans la STB. La souris Tsc1+/- est le premier modèle génétique sans anomalies morphologiques présentant une épilepsie spontanée qui évolue des spasmes vers des crises toniques et tonico-cloniques. Néanmoins cette épilepsie diffère de l’épilepsie humaine de la STB par l’absence de crises focales et de pharmacorésistance, ce qui pourrait être expliqué par l’absence de tubers chez la souris Tsc1+/-. (...) / Tuberous sclerosis complex (TSC) is a genetic multisystemic disease with autosomal dominant transmission due to mutations in a gene TSC1 or TSC2 respectively which encode hamartin and tuberin proteins having an inhibitory action on the mTOR signaling pathway. Early refractory epilepsy is the most common and most deleterious neurological manifestation. The epilepsy often begins in the first year of life by infantile spasms that change in the lack of treatment to tonic or tonic-clonic seizures in age-dependent manner. Although seizures are thought to be generated in cortical tubers, epilepsy mechanisms are not well understood and treatment is often ineffective. Morphological studies showed the altered expression of glutamate receptor mRNA in the giant cells and dysplastic neurons of tubers, but their functional involvement remains unknown. The different NMDA subunits have an age-dependent and region-specific expression, the greatest changes occurring early in life when the TSC epilepsy appears. This work aimed to study the functional expression of aberrant NMDA subunits expression and their role in the epileptogenesis in heterozygous Tsc1+/- mice and post-surgical human tissue of TSC patients using in vitro and in vivo electrophysiological methods. The study reveal that: i) Heterozygous tuber-free Tsc1+/- mice show spontaneous epilepsy in vivo and in vitro in a short developmental window from P9 to P18. ii) These mice exhibit an altered NMDA receptor expression in mTOR dependent and layer-specific manner with GluN2C/D subunits overexpression in layers 4 and 2/3, and GluN2B ovexpression in layers 2/3. This abnormal NMDA receptors expression is prevented by the administration of an mTOR inhibitor, rapamycin. iii) The same alterations of NMDA receptors’ expression are shown in post-surgical tissues not only in tubers from TSC patients, but also in focal cortical dysplasia (FCD), these two malformations sharing etiological and pathophysiological similarities. iv) Quantitative RT-PCR confirms the excessive GluN2C subunit expression in Tsc1+/- mouse cortex and human tissue of tubers and DCF. v) Epileptic discharges in Tsc1+/- mice are generated in the granular layer 4 of the cortex before spreading to the superficial and then to deep layers, thus borrowing the cortical microcircuits. vi) Excessive expression of GluN2C subunit in the cortex contributes to neuronal hyperexcitability in Tsc1+/- mice, as well as in human tubers and DCF tissues, since epileptic discharges are blocked by selective GluN2C/D antagonists. vii) Seizures in Tsc1+/- mice follow the age-dependent sequence, evolving from "spasms-like" to "tonic-clonic like" thus reminding the human epilepsy, with two peaks of highest seizure incidence at P13 and P16 corresponding respectively to age of infantile spasms and of tonic seizures in human. The age-dependent evolution of interhemispheric propagation delay could contribute to this change in seizure type. These results show for the first time that TSC1 happloinsuffisancy in tuber-free Tsc1+/- mice is sufficient to produce an alteration in NMDA receptor expression in an mTOR dependent manner, and thus contributes to epileptogenesis in TSC. The Tsc1+/- mouse line is the first genetic model of TSC without morphological abnormalities presenting with early spontaneous seizures which evolves from “spasms-like” to “tonic-clonic like” seizures. However, the epilepsy in Tsc1+/- mice differs from human TSC epilepsy by the absence of focal seizures and of drug-resistance. Both could be explained by the lack of tubers in the Tsc1+/- mice. It remains to determine whether the expression of GluN2C subunit is also transitional in Tsc1+/- mice and whether other factors contribute to determine the age-dependent epilepsy. This study opens new therapeutic perspectives of TSC epilepsy targeting GluN2C subunit of NMDA receptors.
26

Rôle de l’altération des récepteurs de NMDA dans l’épilepsie associée à la Sclérose Tubéreuse de Bourneville étudié sur un modèle animal et le tissu humain / The role of NMDA receptors alteration in the epilepsy related to Tuberos Sclerosis Complex studied on the animal model and human tissue

Gataullina, Svetlana 27 January 2015 (has links)
La sclérose tubéreuse de Bourneville (STB) est une maladie génétique et multi-systémique à transmission autosomique dominante due à des mutations d’un gène TSC1 ou TSC2 qui codent respectivement pour hamartine et tuberine ayant une action inhibitrice sur la voie de signalisation mTOR. L’épilepsie précoce et pharmacorésistante est la manifestation neurologique la plus fréquente et la plus délétère de la STB. Elle débute souvent dans la première année de vie par des spasmes infantiles qui évoluent avec l’âge et en absence de traitement vers des crises toniques ou tonico-cloniques. Bien que les crises soient supposées être générées dans des tubers corticaux, les mécanismes de l’épilepsie ne sont pas bien élucidés et le traitement reste souvent inefficace. Des études morphologiques ont montré une altération de l’expression ARNm des récepteurs au glutamate dans les cellules géantes et les neurones dysplasiques des tubers, mais leur implication fonctionnelle restait à montrer. Les différentes sous-unités NMDA ont une expression âge-dépendante et région-spécifique, les plus grands changements survenant au début de la vie quand l’épilepsie de la STB apparaît. Ce travail avait pour but d’étudier à l’aide de méthodes électrophysiologiques in vitro et in vivo l’expression fonctionnelle des sous-unités NMDA aberrantes et de déterminer leur rôle dans l’épileptogènese chez les souris hétérozygotes Tsc1+/- et sur le tissu humain STB post-opératoire. Nous avons pu démontrer que : i) Les souris hétérozygotes pour le gène Tsc1 sont spontanément épileptiques in vivo et in vitro dans une courte fenêtre dévelopmentale de P9 à P18. ii) Elles présentent une altération d’expression des récepteurs NMDA couche-spécifique et mTOR dépendante avec une surexpression des sous-unités GluN2C/D dans la couche 4 et 2/3 et GluN2B dans les couches 2/3. Cette expression anormale est prévenue par l’administration d’un inhibiteur de la voie mTOR, la rapamycine. iii) Les mêmes altérations d’expression des récepteurs NMDA, sont montrées sur les tissus post-opératoires, non seulement de tubers de STB mais aussi des dysplasies corticales focales (DCF), ces deux malformations ayant des similarités étiologiques et physiopathologiques. iv) La RT-PCR quantitative confirme une expression excessive de GluN2C dans le cortex de souris Tsc1+/- et sur le tissu humain des tubers et DCF. v) Les décharges épileptiques chez la souris Tsc1+/- sont générées dans la couche granulaire 4 du cortex avant de se propager vers les couches superficielles et les couches profondes, empruntant ainsi les microcircuits corticaux. vi) L’expression excessive de la sous-unité GluN2C dans le cortex contribue à l’hyperexcitabilité neuronale chez la souris Tsc1+/- et sur des tissus humains de tubers et de DCF puisque les crises et les décharges sont bloquées par les antagonistes sélectifs de GluN2C/D. vii) Les crises chez la souris Tsc1+/- suivent une séquence âge-dépendante évoluant du type «spasms-like» vers «tonic-clonic like», rappelant celle de l’épilepsie humaine, avec deux pics de haute incidence de crises à P13 et P16 correspondant chez l’homme respectivement l’âge des spasmes infantiles et celui des crises toniques. L’évolution avec l’âge du délai de propagation inter-hémisphérique pourrait contribuer à ce changement de types de crises. Ces résultats montrent donc pour la première fois qu’une happloinsuffisance pour le gène Tsc1 chez les souris Tsc1+/- sans tubers suffit à produire une altération de l’expression des récepteurs NMDA de manière mTOR dépendante et contribuer ainsi à l’épileptogènese dans la STB. La souris Tsc1+/- est le premier modèle génétique sans anomalies morphologiques présentant une épilepsie spontanée qui évolue des spasmes vers des crises toniques et tonico-cloniques. Néanmoins cette épilepsie diffère de l’épilepsie humaine de la STB par l’absence de crises focales et de pharmacorésistance, ce qui pourrait être expliqué par l’absence de tubers chez la souris Tsc1+/-. (...) / Tuberous sclerosis complex (TSC) is a genetic multisystemic disease with autosomal dominant transmission due to mutations in a gene TSC1 or TSC2 respectively which encode hamartin and tuberin proteins having an inhibitory action on the mTOR signaling pathway. Early refractory epilepsy is the most common and most deleterious neurological manifestation. The epilepsy often begins in the first year of life by infantile spasms that change in the lack of treatment to tonic or tonic-clonic seizures in age-dependent manner. Although seizures are thought to be generated in cortical tubers, epilepsy mechanisms are not well understood and treatment is often ineffective. Morphological studies showed the altered expression of glutamate receptor mRNA in the giant cells and dysplastic neurons of tubers, but their functional involvement remains unknown. The different NMDA subunits have an age-dependent and region-specific expression, the greatest changes occurring early in life when the TSC epilepsy appears. This work aimed to study the functional expression of aberrant NMDA subunits expression and their role in the epileptogenesis in heterozygous Tsc1+/- mice and post-surgical human tissue of TSC patients using in vitro and in vivo electrophysiological methods. The study reveal that: i) Heterozygous tuber-free Tsc1+/- mice show spontaneous epilepsy in vivo and in vitro in a short developmental window from P9 to P18. ii) These mice exhibit an altered NMDA receptor expression in mTOR dependent and layer-specific manner with GluN2C/D subunits overexpression in layers 4 and 2/3, and GluN2B ovexpression in layers 2/3. This abnormal NMDA receptors expression is prevented by the administration of an mTOR inhibitor, rapamycin. iii) The same alterations of NMDA receptors’ expression are shown in post-surgical tissues not only in tubers from TSC patients, but also in focal cortical dysplasia (FCD), these two malformations sharing etiological and pathophysiological similarities. iv) Quantitative RT-PCR confirms the excessive GluN2C subunit expression in Tsc1+/- mouse cortex and human tissue of tubers and DCF. v) Epileptic discharges in Tsc1+/- mice are generated in the granular layer 4 of the cortex before spreading to the superficial and then to deep layers, thus borrowing the cortical microcircuits. vi) Excessive expression of GluN2C subunit in the cortex contributes to neuronal hyperexcitability in Tsc1+/- mice, as well as in human tubers and DCF tissues, since epileptic discharges are blocked by selective GluN2C/D antagonists. vii) Seizures in Tsc1+/- mice follow the age-dependent sequence, evolving from "spasms-like" to "tonic-clonic like" thus reminding the human epilepsy, with two peaks of highest seizure incidence at P13 and P16 corresponding respectively to age of infantile spasms and of tonic seizures in human. The age-dependent evolution of interhemispheric propagation delay could contribute to this change in seizure type. These results show for the first time that TSC1 happloinsuffisancy in tuber-free Tsc1+/- mice is sufficient to produce an alteration in NMDA receptor expression in an mTOR dependent manner, and thus contributes to epileptogenesis in TSC. The Tsc1+/- mouse line is the first genetic model of TSC without morphological abnormalities presenting with early spontaneous seizures which evolves from “spasms-like” to “tonic-clonic like” seizures. However, the epilepsy in Tsc1+/- mice differs from human TSC epilepsy by the absence of focal seizures and of drug-resistance. Both could be explained by the lack of tubers in the Tsc1+/- mice. It remains to determine whether the expression of GluN2C subunit is also transitional in Tsc1+/- mice and whether other factors contribute to determine the age-dependent epilepsy. This study opens new therapeutic perspectives of TSC epilepsy targeting GluN2C subunit of NMDA receptors.
27

mTORC1 contributes to ER stress induced cell death

Babcock, Justin Thomas 03 January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Patients with the genetic disorder tuberous sclerosis complex (TSC) suffer from neoplastic growths in multiple organ systems. These growths are the result of inactivating mutations in either the TSC1 or TSC2 tumor suppressor genes, which negatively regulate the activity of mammalian target of rapamycin complex 1(mTORC1). There is currently no cure for this disease; however, my research has found that cells harboring TSC2-inactivating mutations derived from a rat model of TSC are sensitive to apoptosis induced by the clinically approved proteasome inhibitor, bortezomib, in a manner dependent on their high levels of mTORC1 activation. We see that bortezomib induces the unfolded protein response (UPR) in our cell model of TSC, resulting in cell death via apoptosis. The UPR is induced by accumulation of unfolded protein in the endoplasmic reticulum (ER) which activates the three branches of this pathway: Activating transcription factor 6 (ATF6) cleavage, phosphorylation of eukaryotic initiation factor 2α (eIF2α), and the splicing of X-box binding protein1 (XBP1) mRNA. Phosphorylation of eIF2α leads to global inhibition of protein synthesis, preventing more unfolded protein from accumulating in the ER. This phosphorylation also induces the transcription and translation of ATF4 and CCAAT-enhancer binding protein homologous protein (CHOP). Blocking mTORC1 activity in these cells using the mTORC1 inhibitor, rapamycin, prevented the expression of ATF4 and CHOP at both the mRNA and protein level during bortezomib treatment. Rapamycin treatment also reduced apoptosis induced by bortezomib; however, it did not affect bortezomib-induced eIF2α phosphorylation or ATF6 cleavage. These data indicate that rapamycin can repress the induction of UPR-dependent apoptosis by suppressing the transcription of ATF4 and CHOP mRNAs. In addition to these findings, we find that a TSC2-null angiomyolipoma cell line forms vacuoles when treated with the proteasome inhibitor MG-132. We found these vacuoles to be derived from the ER and that rapamycin blocked their formation. Rapamycin also enhanced expansion of the ER during MG-132 stress and restored its degradation by autophagy. Taken together these findings suggest that bortezomib might be used to treat neoplastic growths associated with TSC. However, they also caution against combining specific cell death inducing agents with rapamycin during chemotherapy.
28

Mitigation of Background Harmonic Amplification at PCC Using Active Filtering of STATCOM

Malki, Luai January 2017 (has links)
Shunt compensation devices have been a powerful candidate for expanding the limits of transmission facilities, allowing more active power transport and supporting voltage and overall stability of the network. An example of such devices is the Static Synchronous Compensator (STATCOM) which is based on Voltage Source Converter (VSC) which synthesizes output voltage and current for mainly reactive power compensation. STATCOMs might be accompanied with a Thyristor Switched Capacitor (TSC) or Reactor (TSR) which are controllable shunt devices for extra VARs required, along with passive filters for absorbing the switching harmonics generated by the VSC. Such STATCOM topology is referred as the Hybrid STATCOM.However, such configuration typically results in parallel resonances with the maingrid’s passive elements at different harmonic frequencies. This leads to amplification of background harmonics, if any exist, at the Point of Common Coupling (PCC) where the Hybrid STATCOM is connected. This thesis deals with the VSC control in the STATCOM to mitigate the harmonic amplification behavior by active filtering,which is based on emulating an impedance by the control. Also, the overall system passivity is essentially studied, which ensures a passive system with respect to harmonics. / Shunt-kompensationsanordningar har varit en kraftfull kandidat för att öka gränserna för överföringsanläggningar, vilket möjliggör högre aktiv effekt och understöderspännings-stabilitet och övergripande stabilitet i kraftnätet. Ett exempel på sådana enheter är Static Synchronous Compensator (STATCOM) som är baserat på Voltage Source Converter (VSC) som syntetiserar utspänning och ström för huvudsakligen reaktiv effektkompensation. STATCOMs kan åtföljas av en Thyristor Switched kapacitor (TSC) eller Reaktor (TSR) som är kontrollerbara shunt-apparater som ökar kapaciteten för reaktiv effekt (VARs), tillsammans med passiva filter för att absorbera övertoner som genereras av VSC. Sådan STATCOM-topologi kallas HybridSTATCOM. Emellertid, en sådan konfiguration resulterar i parallella resonanser med huvudnätets passiva element vid olika övertoner. Detta leder till förstärkning av bakgrundsövertoner, om någon existerar, vid Point of Common Coupling (PCC) där Hybrid STATCOM är ansluten. Denna avhandling behandlar hur VSC kontrolleras i STATCOM för att mildra förstärkningen av nivåer för övertoner genom aktivfiltrering, vilket är baserat på att VSC kontrollen emulerar en impedans. Dessutom studeras övergripande systempassivitet, vilket säkerställer ett passivt system med avseende på övertoner.
29

Régulation de l'apoptose des lymphocytes T par les protéines de la famille TSC-22D / Regulation of T-cell apoptosis by proteins of the TSC-22D family

Pépin, Aurélie 12 July 2011 (has links)
Les protéines GILZ (Glucocorticoid-Induced Leucine Zipper) et TSC-22 (Transforming growth factor-beta Stimulated Clone-22) appartiennent à la famille de protéines TSC-22D (TSC-22 Domain). GILZ a été décrit précédemment comme étant induit au cours de la déprivation en interleukine-2 (IL-2) des lymphocytes de la lignée cellulaire CTLL-2, permettant ainsi de retarder leur apoptose. Le but de notre travail était de déterminer les rôles respectifs de GILZ et TSC-22 au cours de l’apoptose des cellules CTLL-2.Nos résultats ont permis de montrer que TSC-22 augmentait l’apoptose induite par la déprivation en IL-2 des cellules CTLL-2. Nous avons mis en évidence une augmentation de l’activation des caspases ainsi qu’une régulation positive de l’expression de BIM. Nous avons en outre montré que l’expression de GILZ, protéine anti-apoptotique, induite lors de la déprivation en IL-2, était régulée négativement en présence de TSC-22. Enfin, nous avons montré que l’expression de l’ARNm de gilz était régulée négativement par TSC-22, mais que la stabilité de son ARNm n’était pas modifiée.Notre travail a donc permis de montrer que TSC-22 accélère l’entrée en apoptose des lymphocytes T en régulant négativement l’expression de la protéine anti-apoptotique GILZ. / GILZ (Glucocorticoid-Induced Leucine Zipper) and TSC-22 (Transforming growth factor-beta Stimulated Clone-22) belong to the TSC-22D (TSC-22 Domain) family of proteins. GILZ has been previously shown to be induced upon interleukin-2 (IL-2) deprivation in the T-cell line CTLL-2, allowing cells to delay apoptosis. The aim of our study was to elucidate the respective roles of GILZ and TSC-22 during IL-2 deprivation-induced T-lymphocytes apoptosis.Our results demonstrated that TSC-22 increased CTLL-2 cells apoptosis induced upon IL-2 deprivation. We highlighted in TSC-22 expressing cells both an increase in caspases activation and BIM expression up-regulation. We also demonstrated that GILZ expression, an anti-apoptotic protein, known to be induced after IL-2 withdrawal, was down-regulated in the presence of TSC-22. Moreover, we showed that gilz mRNA expression was also significantly repressed, but gilz mRNA half-life was not modified.Altogether, these results suggest that, in T-cells, TSC-22 could behave as a repressor of GILZ expression, accelerating IL-2 deprivation-induced apoptosis.
30

Régulation de l'apoptose des lymphocytes T par les protéines de la famille TSC-22D

Pepin, Aurelie 12 July 2011 (has links) (PDF)
Les protéines GILZ (Glucocorticoid-Induced Leucine Zipper) et TSC-22 (Transforming growth factor-beta Stimulated Clone-22) appartiennent à la famille de protéines TSC-22D (TSC-22 Domain). GILZ a été décrit précédemment comme étant induit au cours de la déprivation en interleukine-2 (IL-2) des lymphocytes de la lignée cellulaire CTLL-2, permettant ainsi de retarder leur apoptose. Le but de notre travail était de déterminer les rôles respectifs de GILZ et TSC-22 au cours de l'apoptose des cellules CTLL-2.Nos résultats ont permis de montrer que TSC-22 augmentait l'apoptose induite par la déprivation en IL-2 des cellules CTLL-2. Nous avons mis en évidence une augmentation de l'activation des caspases ainsi qu'une régulation positive de l'expression de BIM. Nous avons en outre montré que l'expression de GILZ, protéine anti-apoptotique, induite lors de la déprivation en IL-2, était régulée négativement en présence de TSC-22. Enfin, nous avons montré que l'expression de l'ARNm de gilz était régulée négativement par TSC-22, mais que la stabilité de son ARNm n'était pas modifiée.Notre travail a donc permis de montrer que TSC-22 accélère l'entrée en apoptose des lymphocytes T en régulant négativement l'expression de la protéine anti-apoptotique GILZ.

Page generated in 0.0576 seconds