• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 19
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ideella skador : särskilt om sveda och värk / Non-Financial damages : in particular damages for pain and suffering

Wickman, Tobias, Hamwi, Sandybell January 2016 (has links)
att ideellt skadestånd ska utgå måste den skadelidande tillfogats personskada enligt 2:1 SkL. Det ideella skadeståndsbeloppet omfattar skadestånd för fysiskt och psykiskt lidande vilket delas in i två kategorier, lidande av övergående natur, dvs. sveda och värk samt lidande av bestående karaktär, dvs. lyte och men. Det finns tidigare studier med fokus på ideella skadestånd. Det saknas dock studier och analyser kring hur den rättsliga beräkningen av ideella skadestånd förhåller sig till likhetsprincipen. Skadeståndet beräknas på subjektiva grunder och domstolen har till sin hjälp Trafikskadenämndens tabeller. Dessa tabeller utgör en viktig faktor för bestämmandet av skadeståndet för sveda och värk, eftersom domstolarna i flera rättsfall använt tabellerna som vägledning vid beräkning av skadeståndet. Exempelvis NJA 2000 s. 278, NJA 2011 s. 638. När domstolen använder tabellerna som vägledning vid beräkning av skadeståndet upprätthålls likhetsprincipen, givet att omständigheterna i fallen tillåter det. Domstolarna ska även kunna bortse från dessa och göra en skönsmässig bedömning när det krävs. Trots att domstolarna i stor utsträckning utgår ifrån Trafikskadenämndens tabellverk finns det ingen transparens i förhållande till dessa. Domstolarna hänvisar till tabellerna, dock ges inga detaljer kring beräkningen av skadeståndet. Likhetsprincipen är därtill svår att upprätthålla vid tillämpning av tabellerna pga. att många fall innehåller unika moment vilka tabeller aldrig kan omfatta.
2

WSMR Telemetry Capabilities: Today's Technology in Telemetry

Aguirre, Zoe, Beltran, Gabe 10 1900 (has links)
ITC/USA 2008 Conference Proceedings / The Forty-Fourth Annual International Telemetering Conference and Technical Exhibition / October 27-30, 2008 / Town and Country Resort & Convention Center, San Diego, California / White Sands Missile Range is the largest overland test range in North America occupying over 3,200 square miles in Southern New Mexico and nearby territory. One of the most critical test elements at White Sand Missile Range is it's capabilities in the telemetry field. Much significant advancement in technology has given WSMR and the entire electronics world the ability to achieve new levels of data acquisition that were not achievable a decade ago. And as attention to our nation's defense is of high priority, White Sands Missile Range provides to highest levels of telemetry competence in the Western Hemisphere.
3

Analyse des interactions entre flux synchrones et flux asynchrones dans les réseaux temps réel / Analysis of interactions between synchronous and asynchronous flows in real-time networks

Daigmorte, Hugo 21 January 2019 (has links)
Les systèmes embarqués complexes (avions, satellites, drones...) contiennent de plus en plus de calculateurs. Désormais ce sont des dizaines voire des centaines de calculateurs qui communiquent à travers un réseau partagé. Une fonction est réalisée par la collaboration d'un ensemble de calculateurs qui s'échangent un nombre croissant d'informations. Dans un contexte de temps réel embarqué, il faut non seulement garantir que ces informations échangées sont correctes mais il faut aussi garantir qu'elles vérifient leurs contraintes temporelles. Du point de vue du réseau cela signifie qu'une information doit être échangée en respectant les délais qui lui sont imposés. Ceci implique de pouvoir borner le temps de traversée du réseau de chaque message afin de vérifier qu'il arrive dans les temps. Or les systèmes embarqués étant de plus en plus complexes et le nombre d'informations échangées étant en constante augmentation, cette borne est de plus en plus difficile à calculer. De plus il est important que cette borne soit le moins pessimiste possible afin d'éviter que le système soit surdimensionné. L'objectif de ce travail est de mettre en place un modèle capable de calculer ces bornes.Afin d'y parvenir nous nous sommes basés sur la méthode d'analyse du Calcul Réseau.Ce travail s'est en particulier attardé sur la modélisation des interactions qui existent entre les messages synchrones et les messages asynchrones. Les modèles présentés dans ce manuscrit prennent en compte les dates d'émission sur le réseau des messages synchrones lors du calcul des bornes supérieures de temps de traversée des messages asynchrones.Les principales contributions apportées par ce manuscrit sont :1. la présentation d'une nouvelle façon d'envisager l'utilisation des dates d'émission sur le bus CAN : la synchronisation faible.Ainsi que la modélisation complète d'un tel système et enfin l'évaluation du gain apporté par cette solution.2. une modélisation complète du réseau TTEthernet permettant d'évaluer finement l'impact des flux synchrones sur le tempsde traversée des flux asynchrones.3. une présentation de l'utilisation de la synchronisation dans le réseau TSN ainsi qu'un modèlecomplet permettant d'analyser cette nouvelle technologie. / Complex embedded systems (planes, satellites, drones ...) contain more and more calculators. From now on, these are tens or even hundreds of calculators that communicate through a shared network. A function is achieved by the collaboration of a set of devices that exchange a growing number of information. In an embedded real-time context, it must be ensured that these informations exchanged are correct but it must also be ensured that they verify their temporal constraints. From the network point of view, this means that informations must be exchanged respecting their deadlines. This implies being able to upper bound the traversal time of the network of each message in order to verify that it arrives in time. However, as embedded systems are more and more complex and as the amount of information exchanged is constantly increasing, this bound is increasingly difficult to compute. Furthermore, it is important that this upper bound to be the least pessimistic possible to avoid an oversized system.The goal of this work is to develop new methods of analysis in order to be able to compute these bounds.In order to achieve this, we used the Network Calculus method of analysis.This work focuses on the modeling of interactions between synchronous messages and asynchronous messages.The models presented in this work take into account the transmission dates on the network of synchronous messageswhen calculating the upper bounds of traversal time of the asynchronous messages.The main contributions are:1. the presentation of a new way of considering the use of the dates of emission on the CAN bus: the weak synchronization.As well as the complete modeling of such a system and finally the evaluation of the gain provided by this solution.2. a complete modeling of the TTEthernet network allowing to evaluate the impact of the synchronous flows on the traversal time of the asynchronous flows.3. a presentation of the use of synchronization in the TSN network and a complete model for analyzing this new technology.
4

End-to-end QoS Mapping and Traffic Forwarding in Converged TSN-5G Networks

Satka, Zenepe January 2023 (has links)
The advancement of technology has led to an increase in the demand for ultra-low end-to-end network latency in real-time applications with a target of below 10ms. The IEEE 802.1 Time-Sensitive Networking (TSN) is a set of standards that supports the required low-latency wired communication with ultra-low jitter for real-time applications. TSN is designed for fixed networks thus it misses the flexibility of wireless networks.To overcome this limitation and to increase its applicability in different applications, an integration of TSN with other wireless technologies is needed. The fifth generation of cellular networks (5G) supports real-time applications with its Ultra-Reliable Low Latency Communication (URLLC) service. 5G URLLC is designed to meet the stringent timing requirements of these applications, such as providing reliable communication with latencies as low as 1ms. Seamless integration of TSN and 5G is needed to fully utilize the potential of these technologies in contemporary and future industrial applications. However, to achieve the end-to-end Quality of Service (QoS) requirements of a TSN-5G network, a significant effort is required due to the large dissimilarity between these technologies. This thesis presents a comprehensive and well-structured snapshot of the existing research on TSN-5G integration that identifies gaps in the current research and highlights the opportunities for further research in the area of TSN-5G integration. In particular, the thesis identifies that the state of the art lacks an end-to-end mapping of QoS requirements and traffic forwarding mechanisms for a converged TSN-5G network. This lack of knowledge and tool support hampers the utilisation of ground-breaking technologies like TSN and 5G. Hence, the thesis develops novel techniques to support the end-to-end QoS mapping and traffic forwarding of a converged TSN-5G network for predictable communication.Furthermore, the thesis presents a translation technique between TSN and 5G with a proof-of-concept implementation in a well-known TSN network simulator. Moreover, a novel QoS mapping algorithm is proposed to support the systematic mapping of QoS characteristics and integration of traffic flows in a converged TSN-5G network. / PROVIDENT
5

Enhancing TSN Adoption by Industry : Tools to Support Migrating Ethernet-based Legacy Networks into TSN

Bujosa Mateu, Daniel January 2023 (has links)
New technologies present opportunities and challenges for industries. One major challenge is the ease, or even feasibility, of its adoption. The Time-Sensitive Networking (TSN) standards offer a range of features relevant to various applications and are key for the transition to Industry 4.0. These features include deterministic zero-jitter, low-latency data transmission, transmission of traffic with various levels of time-criticality on the same network, fault tolerance mechanisms, and advanced network management allowing dynamic reconfiguration. This thesis aims to develop tools that enable the industry to adopt TSN easily and efficiently. Specifically, we create tools that facilitate the migration of legacy networks to TSN, enabling the preservation of most of the legacy systems and solutions while reducing costs and adoption time. Firstly, we introduce LETRA (Legacy Ethernet-based Traffic Mapping Tool), a tool for mapping Ethernet-based legacy traffic to the new TSN traffic classes. Secondly, we develop HERMES (Heuristic Multi-queue Scheduler), a heuristic Time-Triggered (TT) traffic scheduler that can meet the characteristics of legacy systems and provide quick results suitable for reconfiguration. Thirdly, we develop TALESS (TSN with Legacy End-Stations Synchronization), a mechanism to avoid adverse consequences caused by the lack of synchronization between legacy systems and TSN-based ones, as not all legacy systems need to support the TSN synchronization mechanisms. Finally, we improve Stream Reservation Protocol (SRP) to enhance Audio-Video Bridging (AVB) traffic configuration in terms of termination and consistency. / Uppfinningen av ångmaskinen i slutet av 1700-talet markerade början på en kontinuerlig och snabb process av automatisering och förbättring inom industrin, som tog ytterligare fart i och med införandet av datorstyrda maskiner och robotik i mitten av 1900-talet. Moderna fabriker och deras produkter är beroende av hundratals specialiserade processorer, inklusive sensorer, ställdon och styrenheter, som samarbetar för att utföra uppgifter och tillhandahålla tjänster. Dessa processorer är beroende av kommunikations-subsystem för att samordna och dela resurser. Dessa system, som vanligtvis kallas distribuerade system, omger oss och används av de flesta människor hela tiden. Exempel på distribuerade system finns i en mängd olika exempel, från moderna bilar till fabriker som producerar olika varor. I en bil finns det till exempel många olika sensorer och ställdon som hastighetsmätare, positionssensorer, bränsleinsprutare och tändspolar, som alla arbetar tillsammans för att se till att bilen fungerar säkert och effektivt, medan det i fabriker används robotarmar, transportband och andra anordningar för att automatisera produktionsprocessen och öka effektiviteten. Den snabba utvecklingen av tekniken kan dock göra det svårt för företag att hålla jämna steg med de senaste verktygen och systemen, eftersom kostnaden för att införa tekniken kanske inte är kostnadseffektiv, inte bara på grund av att tekniken måste förvärvas, utan också på grund av de förändringar som införandet kräver i andra system som samarbetar. Till exempel skulle införandet av ett nytt kommunikations-subsystem kräva att alla enheter som använder det anpassas. Dessutom kräver uppgraderingen till nyare teknik ofta betydande resurser, inte bara ekonomiska utan även naturresurser. Detta kan leda till ökat avfall och ökade koldioxidutsläpp, vilket utgör en risk för miljön. Dessutom kan följderna av teknikuppgraderingar, till exempel bortskaffande av föråldrad utrustning och produktion av e-avfall, ha ytterligare miljöpåverkan. I den här avhandlingen fokuserar vi på Time Sensitive Networking (TSN), en ny kommunikationsstandard med betydande fördelar för den framväxande tekniken. Även om TSN-tekniken ger många fördelar, bland annat högre kommunikationshastighet och lägre latenstider, saknar många nuvarande industrisystem mjuk- och hårdvarukraven för att stödja denna teknik. Målet med vår forskning är därför tvåfaldigt: för det första att förbättra TSN’s mekanismer för att göra den mer attraktiv för industrin och för det andra att utveckla verktyg som möjliggör en sömlös migration och integration av äldre system till TSN, så att slutstationerna kan utnyttja fördelarna med TSN utan att behöva byta ut eller uppgradera större delen av systemet. Detta tillvägagångssätt sparar värdefull tid och resurser och minskar det avfall som uppstår under processen.
6

Specification and analysis of an extended AFDX with TSN/BLS shapers for mixed-criticality avionics applications / Spécification et Analyse d'un AFDX étendu avec TSN/BLS pour des applications avioniques de criticités mixtes

Finzi, Anaïs 11 June 2018 (has links)
L'augmentation du nombre de systèmes interconnectés et l’expansion des données échangées dans les réseaux avioniques ont contribué à la complexification des architectures de communication. Pour gérer cette évolution, une nouvelle solution basée sur un réseau cœur haut débit, e.g., l'AFDX (Avionics Full DupleX), a été implémentée sur l'A380. Cependant, il reste des réseaux bas débit, e.g, CAN ou A429, utilisés pour certaines fonctions spécifiques. Cette architecture réduit le délai de développement, mais en contrepartie, elle conduit à de l’hétérogénéité et à de nouveaux challenges pour garantir les contraintes temps-réel. Pour résoudre ces challenges, une architecture homogène basé sur l'AFDX pourrait apporter de grands avantages, tels que une facilité de l'installation et maintenance, et une réduction de poids et coûts. Cette architecture homogène doit supporter des applications de criticités mixtes, où coexistent les trafics critiques (SCT), Best-effort (BE) et le trafic AFDX actuel (RC). Pour atteindre ce but, nous commençons par évaluer les avantages et les inconvénients des solutions existantes par rapport aux contraintes avioniques. Cela nous conduit à sélectionner le Burst Limiting Shaper (BLS) (proposé par le groupe IEEE Time Sensitive Networking (TSN)) allié à un ordonnanceur Static Priority non-preemptif. Ainsi, nous identifions quatre contributions principales dans cette thèse. Tout d'abord, nous spécifions un AFDX étendu avec le TSN/BLS. Une analyse préliminaire basée sur de la simulation a donné des résultats encourageants pour poursuivre sur cette voie. En second, nous détaillons une analyse temporelle de l'AFDX étendu, grâce au Network Calculus, pour calculer des bornes maximales des délais pire cas des différents types de trafic, pour prouver le déterminisme du réseau et le respect des contraintes temporelles. Une analyse de performance préliminaire montre l'efficacité de la solution à améliorer les délais de RC, tout en garantissant les contraintes. Cependant, cette analyse a aussi montré certaines limitations du modèle en termes de pessimisme. Notre troisième contribution est par conséquent la réduction de ce pessimisme, grâce à une seconde modélisation de l'AFDX étendu, et à une méthode de paramétrage des variables système. Cette méthode permet d'améliorer les performances de RC tout en garantissant les contraintes temporelles du SCT et RC. Finalement, nous validons notre proposition à travers des études de cas avioniques réalistes pour vérifier son efficacité. Les résultats montrent une forte amélioration des délais de RC ainsi que de l'ordonnançabilité de SCT et RC, en comparaison à l'AFDX actuel et au Deficit Round Robin. / The growing number of interconnected end-systems and the expansion of exchanged data in avionics have led to an increase in complexity of the communication architecture. To cope with this trend, a first communication solution based on a high rate backbone network, i.e., the AFDX (Avionics Full Duplex Switched Ethernet), has been implemented by Airbus in the A380. Moreover, some low rate data buses, e.g., CAN or ARINC 429, are still used to handle some specific avionics domains. Although this architecture reduces the time to market, it conjointly leads to inherent heterogeneity and new challenges to guarantee the real-time requirements. To handle these emerging issues, a homogeneous avionic communication architecture based the AFDX technology to interconnect different avionics domains may bring significant advantages, such as easier installation and maintenance and reduced weight and costs. Furthermore, this homogeneous communication architecture needs to support mixed-criticality applications, where safety-critical traffic (SCT), current rate constraint AFDX traffic (RC) and best effort traffic (BE) co-exist. To achieve this aim, first, we assess the pros and cons of most relevant existing solutions vs the main avionics requirements, to support mixed-criticality applications on the AFDX network. Afterwards, the Burst Limiting Shaper (BLS) (proposed by IEEE Time Sensitive Networking (TSN) Task group) on top of a Non-Preemptive Static Priority (NP-SP) scheduler has been selected as the most promising solution. Hence, our main contributions in this thesis are fourfold. First, we specify the extended AFDX incorporating the TSN/BLS on top of NP-SP. A preliminary performance analysis based on simulations has been conducted. These first results were encouraging to pursue this proposal. Second, we conduct a timing analysis of the extended AFDX using Network Calculus to compute the delay upper bounds of the different traffic classes and prove the determinism of such a solution. The preliminary performance evaluation has shown the efficiency of the extended AFDX to enhance the RC delay bounds while guaranteeing the constraints. However, they have also highlighted some limitations of the proposed model in terms of pessimism. Third, we introduce a second model of the extended AFDX to enhance the delay bounds tightness. Moreover, we propose a tuning method of TSN/BLS parameters to enhance as much as possible the RC timing performance, while guaranteeing the constraints. Finally, we validate our proposal through representative case studies to assess its efficiency. The results show the enhancements of the RC delay bounds as well as the schedulability level of both SCT and RC traffic, in comparison to the current AFDX and Deficit Round Robin (DRR).
7

Energy Consumption of In-Vehicle Communication in Electric Vehicles : A comparison between CAN, Ethernet and EEE / Energikonsumtion vid intern kommunikation i elbilar : En jämförelse mellan CAN, Ethernet och EEE

French, Kimberley January 2019 (has links)
As a step towards decreasing the greenhouse gas emissions caused by the transport sector, electrical vehicles (EVs) have become more and more popular. Two major problem areas the EV industry is currently facing are range limitations, i.e. being restricted by the capacity of the battery, as well as a demand for higher bandwidth as the in-vehicle communication increases. In this thesis, an attempt is made to address these problem areas by examining the energy consumption required by Controller Area Network (CAN) and Ethernet. In addition, the effects of Energy-Efficient Ethernet (EEE) are reviewed. The protocols are examined by performing a theoretical analysis over CAN, Ethernet and EEE, physical tests over CAN and Ethernet, as well as simulations of EEE. The results show that Ethernet requires 2.5 to four times more energy than CAN in theory, and 4.5 to six times more based on physical measurements. The energy consumption of EEE depends on usage, ranging from energy levels of 40 \% less than CAN when idle, and up to equal amounts as regular Ethernet at high utilisation. By taking full advantage of the traits of Time-Sensitive Networking, EEE has the potential of significantly decreasing the amount of energy consumed compared to standard Ethernet while still providing a much higher bandwidth than CAN, at the cost of introducing short delays. This thesis provides insight into the behaviour of a transmitter for each of the three protocols, discusses the energy implications of replacing CAN with Ethernet and highlights the importance of understanding how to use Ethernet and EEE efficiently.
8

Návrh vybrané části standardu IEEE 802.1Q / Design of selected IEEE 802.1Q standard parts

Kliment, Filip January 2018 (has links)
This thesis deals with network substandards from the TSN group (IEEE 802.1Q), which deal with prioritization of network traffic in TSN networks. These sub-standards include 802.1QBV and 802.1QBU, which have been described in more detail and compared in terms of network permeability and latency. Substandard 802.1QBU was chosen for the design implementation in FPGA. The design was described in VHDL. The designed design was verified by simulations, using self-tests. The work includes synthesis and time analysis.
9

Návrh vybrané části standardu IEEE 802.1Q / Design of selected IEEE 802.1Q standard parts

Kliment, Filip January 2018 (has links)
This thesis deals with network substandards from the TSN group (IEEE 802.1Q), which deal with prioritization of network traffic in TSN networks. These sub-standards include 802.1QBV and 802.1QBU, which have been described in more detail and compared in terms of network permeability and latency. Substandard 802.1QBU was chosen for the design implementation in FPGA. The design was described in VHDL. The devloped design was verified by simulations, using self-tests. The work includes synthesis and time analysis.
10

Performance Analysis of the Preemption Mechanism in TSN

Murselović, Lejla January 2020 (has links)
Ethernet-based real-time network communication technologies are nowadays a promising communication technology for industrial applications. It offers high bandwidth, scalability and performance compared to the existing real-time networks. Time-Sensitive Networking is an enhancement for the existing Ethernet standards thus offers compatibility, cost efficiency and simplified infrastructure, like previous prioritization and bridging standards. Time-Sensitive Networking is suitable for networks with both time-critical and non-time-critical traffic. The timing requirements of time-critical traffic are undisturbed by the less-critical traffic due to TSN features like the Time-Aware Scheduler. It is a time-triggered scheduling mechanism that guarantees the fulfilment of temporal requirements of highly time-critical traffic. Features like the Credit-Based Shapers and preemption result in a more efficiently utilized network. This thesis focuses on the effects that the preemption mechanism has on network performance. Simulation-based performance analysis of a singe-node and singe-egress port model for different configuration patterns is conducted. The simulation tool used is a custom developed simulator called TSNS. The configuration patterns include having multiple express traffic classes. In a single-egress port model, the most significant performance contributor is the response time and this is one of the simulation measurements obtained from the TSNS network simulator. The comparison between the results of these different network configurations, using realistic traffic patterns, provides a quantitative evaluation of the network performance when the network is configured in various ways, including multiple preemption scenarios.

Page generated in 0.042 seconds