201 |
Cross-Flow-Induced Vibrations Deep Inside a Closely-Packed Tube BankGrover, L. K. 05 1900 (has links)
<p> Heat-exchangers designed and fabricated in accordance with the existing design standards may be susceptible to damage as a result of excessive tube vibrations caused by the shell-side fluid flow. The present investigat ion was undertaken to further our understanding of the vibration behaviour of tube arrays. </p> <p> An experimental facility and techniques have been developed by means of which the major mechanisms that cause flow-induced vibrations in tube arrays due to cross-flow can be produced and properly identified. </p> <p> The experiments were conducted in a low-speed windtunnel having 305 x 305 mm.working section. The tube-bundle was a parallel-triangular tube-array with pitch/diameter = 1.375 . The array was 27 rows deep with 5 tubes in each row . The tubes were designed such that they could be conveniently removed from outside the wind-tunnel, in order to facilitate studying the effect of tube-bundle size on vibration and flow characteristics . Nineteen identical tubes in the middle of the tube-array were movable and specially designed so that natural frequency and damping could be controlled precisely over a range of values. </p> <p> The experiments have verified that deep inside a closely-packed tube-bank the existence of discrete vortex shedding is not a working hypothesis and the response of a tube in a tube-bundle is expected to be a function of Reynolds number and the number of upstream rows of tubes. From the flow-field velocity power-spectra obtained for the array tested and from the available data existing in the literature, it is seen that there is a strong possibility of predicting the dominating frequency in the flow from a universal Strauhal number. For the first time a fluidelastic stability boundary for the array has been derived and it is noticed that the slope of this boundary is significantly different from that derived by other authors from theoretical considerations. </p> / Thesis / Doctor of Philosophy (PhD)
|
202 |
An Experimental and Numerical Investigation of Closed-loop Impedance Pumping in Compliant, Elastic Tube MillistructuresRich, Bryan C. 10 June 2016 (has links)
No description available.
|
203 |
Dynamique des tubes parcourus à grande vitesse : influence de la géométrie des tubes et leur environnement sur la justesse et la dispersion / Dynamic of tubes crossed by high speed projectiles : influence of tube and weapon geometry on accuracy and dispersionLiennard, Mathilda 16 October 2015 (has links)
La précision de tir d’une arme dépend de nombreux facteurs intervenant aux différentes étapes du parcours de la munition (balistique intérieure, intermédiaire et extérieure). Certains travaux ont démontré l’importance de l’influence de la phase de balistique intérieure, pendant laquelle la munition traverse le tube, sur les résultats à la cible. En effet, c’est cette phase qui détermine les conditions de sortie du tube de la munition et par conséquent son comportement au cours du vol. Les conditions d’entrée du projectile, la géométrie du tube et de l’arme, et les mouvements de ces derniers au cours du tir, sont autant de paramètres pouvant modifier l’interaction tube/projectile et ainsi entraîner un changement des vitesses angulaires et de translation de la munition au moment du largage. Cette étude a donc pour but de mettre en exergue les paramètres géométriques de l’arme et du tube qui influencent la justesse et la dispersion. Une analyse statistique a été réalisée à partir de la base de données des résultats de tir du 25 mm. Elle a permis de mettre en évidence l’influence de plusieurs paramètres dont la rectitude du tube. Par la suite, des essais ont été conduits en appareil de tir dans le but d’isoler la part de la géométrie du tube sur les écarts à la cible et ainsi de confirmer la contribution de la rectitude. Un modèle numérique tridimensionnel a été développé afin de faire varier ce paramètre et d’étudier son influence sur le comportement de la munition en phase de balistique intérieure. La représentativité du modèle a été vérifiée à l’aide d’accéléromètres embarqués dans la munition. Ces tirs ont nécessité le développement d’une solution innovante optoélectronique afin de transmettre les accélérations en temps réel. Les résultats expérimentaux obtenus ont permis de constater que les accélérations de la munition modélisée étaient représentatives. Le modèle permet maintenant de réaliser des études paramétriques et de déterminer les profils de tube les plus pénalisants pour la précision de tir. / Gun accuracy is influenced by several factors during the stages of the ammunition course (internal, intermediate and external ballistics). According to previous studies, internal ballistics are the major contributor to deviations from target. Indeed, this phase determines projectile exit conditions and, consequently, his behavior during the flight. The projectile entry conditions, the weapon and barrel geometry and their movements during firing, can modify the interaction tube / projectile and change ammunition angular rates and its transversal velocities. The purpose of this thesis is to determine the parameters related to barrel and gun geometry, which influence the bias and the dispersion. A statistical analysis was led thanks to the data base of the 25 mm firing results. It was found that some parameters, including barrel straightness, affect accuracy. Subsequently, tests were conducted with a firing appliance in order to isolate the barrel geometry influence on the deviations from the target and to confirm the straightness impact. A tridimensional numerical model was created in order to vary this parameter and to study its influence on the ammunition behavior during internal ballistics. The representativeness of the model was validated using accelerometers embedded in the ammunitions. The firing of these ammunitions has required the development of an optoelectronic system to transmit accelerations in real time. The comparison between experimental and numerical results has shown close amplitudes and similar shapes curves that proves the representativeness of the model. The model can be used now to lead parametric analysis and to determine the straightness shapes the most penalizing for gun accuracy.
|
204 |
Effect of gravity on convective condensation at low mass velocity / Effet de la gravité sur la condensation convective à faible vitesse massiqueLe Nguyen, Lan Phuong 06 July 2017 (has links)
Les écoulements diphasiques sont couramment utilisés dans de nombreux domaines dont, en particulier, le domaine spatial. La performance de ces systèmes est entièrement régie par les couplages se produisant entre les écoulements et les transferts de chaleur. Cette particularité a conduit, depuis les dernières décennies, au développement de nombreuses études sur les écoulements diphasiques en microgravité. Afin d'accroître la connaissance sur le comportement thermo-hydraulique de ces systèmes thermiques, la présente étude se focalise sur l'étude de la condensation dans un mini-tube en présence ou non de la force gravitationnelle. Pour étudier l'effet de la gravité sur cette configuration, un premier modèle instationnaire d'écoulement diphasique a été développé. Parallèlement, une analyse des effets de la gravité sur l'hydrodynamique et les transferts thermique a été menée dans deux sections d'essai possédant un diamètre interne commun de 3,4 mm et des vitesses massiques faibles à modérées. La première étude a été réalisée au cours de la 62e campagne de vols paraboliques de l'ESA. Elle a été dédiée à la détermination des coefficients de transfert de chaleur quasi-locaux se produisant à l'intérieur d'un tube de cuivre. Afin de visualiser également les régimes d'écoulement présents, un tube en verre a été inséré au sein de cet échangeur. L'effet de la gravité sur les écoulements et les transferts a ainsi été déterminé. La seconde expérience, menée au sol, a porté sur l'étude d'un écoulement de vapeur descendant au sein d'un tube en saphir placé verticalement. Un protocole de mesure permettant d'obtenir simultanément l'épaisseur du film de liquide ruisselant et le coefficient d'échange local associé a été développé. / Liquid-vapor two-phase flows have common applications in many fields including space thermal management systems. The performances of such systems are entirely associated to the coupling between thermal and hydrodynamic phenomena. Therefore, two-phase flows in microgravity condition have emerged as an active research area in the last decades. In order to complete the state of the art and to contribute to the increase in the knowledge of hydrothermal behavior of two-phase thermal management systems, the present study was conducted on convective condensation inside a mini tube, both in normal and micro gravity conditions. To analyze the effect of gravity on such flows, a preliminary transient modeling of the two-phase flow has been established. Simultaneously, an experimental investigation was carried out on the hydrodynamic and thermal behaviors of condensation flows in two test sections of 3.4 mm inner diameter at low and intermediate mass velocities. The first experiment was conducted during the 62nd ESA parabolic flights campaign. The test section was made with copper and allowed measurements of the quasi-local heat transfer coefficient. A glass tube was also inserted in the middle of the test section for the visualization of the two-phase flow regime. From this study, the changes in heat transfer coefficient and flow regime according to gravity variations were determined. The second experiment was carried out on ground in a sapphire tube installed vertically considering downward flow. The set-up was designed in order to measure simultaneously the local heat transfer coefficient and the thickness of the liquid film falling down along the tube wall.
|
205 |
Interaction between Nanoparticles and Aggregates of Amphiphile Molecules / Interaction entre nanoparticules et agrégats de molécules amphiphileTian, Falin 03 July 2015 (has links)
Ayant une structure particulière avec une tête hydrophile et une queue hydrophobe, des molécules amphiphile ont de nombreuses applications importantes, comme par exemple, la fabrication des détergents, la protection et la fonctionnalisation de surfaces, etc. Des agrégats de diverses formes, micelles, véhicules, membranes etc., peuvent se former à partir des amphiphiles. La complexité de ces agrégats moléculaires rend l’étude théorique de ce type de systèmes extrêmement difficile. Jusqu’à présent, notre connaissance sur l’interaction entre des nanoparticules et des agrégats des amphiphiles reste encore incomplète. A l’aide de certaines méthodes de simulations moléculaire et une approche théorique, nous avons entrepris une série d’études pour mieux comprendre les questions fondamentales suivantes :1. Comment la présence de nanoparticules, notamment la courbure de ses surfaces, affecte l’agrégation de molécules amphiphile ?2. Comment une bicouche de lipide, une forme d’agrégat particulier des amphiphile, peut induire l’assemblage auto-organisé de nanoparticules hydrophobes ?3. Est-ce que la présence des nanoparticules peut provoquer des transitions morphologiques d’un nanotube membranaire ? / Amphiphile molecules, endowed with a particular structure containing a hydrophilic head and a hydrophobic tail, have many important applications, e.g., fabrication of detergents, surface coating or surface functionalization, etc. Molecular aggregates of various forms, micelles, vehicle, membranes, etc. can be formed from amphiphile molecules. The complexity of these molecular aggregates involving a large number of atoms make the theoretical study of these system very challenging. Up to now, our understanding of the interaction between nanoparticles and aggregates of amphiphiles remains quite incomplete. Using a variety of molecular simulation methods and some theoretical approaches (Helfrich theory and perturbation theory), we have studied the following issues in the present thesis: 1. How the presence of nanoparticles, especially due to their highly curved surfaces, affects the aggregation of the amphiphiles? 2. How a lipid bilayer, a particular amphiphile aggregate, induces the self-assembly of hydrophobic nanoparticles.3. How the morphology transition of a membrane nanotube can be induced by nanoparticles?
|
206 |
Experimental And Analytical Investigations Into Development Of Double-Tuned Expansion Chambers And Extended Concentric Tube ResonatorsChoudary, Chaitanya P 07 1900 (has links) (PDF)
The performance of an acoustic filter (or muffler) is measured in terms of one of the following parameters: Insertion Loss (IL), Level difference (LD) and Transmission loss (TL). All these three parameters may be evaluated in terms of the four-pole or transfer matrix parameters. Appropriate experimental setups have been designed and developed and practical considerations are described. Measured values of TL are compared with the analytically predicted values. It is shown that the Two-Source-Location method is relatively the best. To start with, the matrizant analysis of conical concentric tube resonators is validated experimentally. The effect of mean flow is investigated. The experimental setup is specially designed to measure the pressure transfer function across the test muffler. It is shown that there is reasonably good agreement between the predicted values of the transfer function and the measured ones for incompressible mean flow as well as stationary medium.
To measure insertion loss of muffler, one needs to calculate the source impedance. The internal impedance of a sound source can be measured using direct or indirect methods. The four-load SPL measurement method is one such indirect method wherein there are three nonlinear equations in terms of two unknowns which makes one of the equations redundant. This leads to erroneous results. To overcome this inherent weakness, two alternatives multi-load methods have been offered in the literature; namely, the least squares and the direct least squares method, to analyze the measured data used for four (or more) different loads. These two methods produce better results than the four-load SPL measurement method used earlier. These measurement methods have been tested on a loudspeaker to measure its source impedance and the results are validated with a known additional acoustic load.
Simple expansion chambers, the simplest of the muffler configurations, have very limited practical application due to the presence of periodic troughs in the transmission loss (TL) spectrum which drastically lower the overall TL of the muffler. Many of the present days automobile exhaust systems make use of the extended tube mufflers, often with perforated ducts because of their low back pressure and good acoustic performance. Tuned extended inlet and outlet can be designed to nullify three-fourths of these troughs, making use of the plane wave theory. However, these cancellations would not occur unless one altered the geometric lengths for the extended tube and perforated tube resonators in order to incorporate the effect of the evanescent higher-order modes (multidimensional effect) through end corrections or lumped inertance approximation at the area discontinuities or junctions. This is investigated here experimentally as well as numerically (through use of 3-D FEM software) for a moving medium as well as stationary medium. The effect of temperature on the end corrections is also investigated.
These tuned extended-tube chambers, however, suffer from the disadvantages of high back pressure and aerodynamic noise generation at the area discontinuities. These two disadvantages can be overcome by means of a perforated bridge between the extended inlet and the extended outlet. One dimensional control volume approach is used to analyze this muffler configuration. It is validated experimentally making use of the two source-location method, which is proven to be the best method available to us. It is thus shown that the inertance of holes plays a role similar to the lumped inertance generated by evanescent 3-D modes at the terminations of the quarter wave resonators in the case of the double-tuned extended tube chambers. The effect of mean flow is also investigated. The resultant transfer matrix is then used to carry out a systematic parametric study in order to arrive at empirical expressions for the differential lengths as well as the end corrections. Thus, an extended concentric tube resonator can be tuned such that the first three troughs that characterize the corresponding simple chamber transmission loss (TL) curve may be eliminated making use of the proposed procedure. In fact, the entire TL curve at low and medium frequencies may be substantially lifted, making the tuned extended concentric tube resonator a viable design option.
|
207 |
Structure-Property-Process Studies During Axial Feed Hot Forming and Fracture of Extruded Polypropylene TubesElngami, Mohamed A. 09 1900 (has links)
Oriented thermoplastics offer interesting opportunities for making structural automotive components due to their higher strengths. A new process, referred to as the axial feed hot oil tube forming (AF-HOTF) process, has been developed and studied for the forming of oriented thermoplastic tubes. The starting material for AF-HOTF process is an oriented polypropylene (OPP) tube produced by the solid state extrusion process. AF-HOTF was used to study forming and fracture behaviour of OPP tubes at large strains. Mechanical properties and molecular orientation of starting and post-formed materials were investigated to gain a better understanding of structure-property-process relationships during solid state extrusion and subsequent forming of OPP tubes. The
development of molecular orientation and other microstructural changes and damage development in extruded and bulged OPP tubes during solid state extrusion and AF-HOTF processes were studied with optical microscopy, wide-angle X-ray diffraction (WAXD) and field emission scanning electron microscope (FE-SEM) techniques. Also, the development of large strains during AF-HOTF of OPP samples were experimentally studied in the form of spatial strain maps, strain/stress state and forming limit strains using an on-line strain mapping method based on digital image correlation (DIC). In addition, tensile tests have been carried out at room temperature on samples machined from the extruded and bulged tubes along the axial and hoop directions. Experimental quantitative relationships amongst molecular orientation parameters and extrusion and AF-HOTF process parameters such as draw ratio, strain and strain state have been obtained. These relationships in the form of White and Spruiell biaxial orientation factors provide a useful insight into molecular reorientation that occurs during extrusion and subsequent forming of OPP tubes. Also, an analytical model for forming
limit prediction that takes into account OPP tube properties, tube dimensions and AF-HOTF process parameters was developed based on existing model of tube hydroforming in the literature. In addition, a new biaxial ball stretching test (BBST) system was developed and utilized to subject the thermoplastic tube to biaxial stretching. The design of the test-rig and results were presented for polypropylene (PP) tubes subjected to BBST at various temperatures. The BBST system was combined with an available on-line imaging and strain analysis system (ARAMIS® system from GOM) to observe the development of strains in the biaxial tensile region during the test. BBST samples were studied with wide angle X-ray diffraction (WAXD) pole figures. Three different hot forming processes (Solid-state extrusion, AF-HOTF and BBST) were used in this research. The structure of the extruded samples at draw ratio 5 and higher was completely changed to fibrils structure, and the yield strength and elastic modulus increased by 50%. Also the crystallinity increased from 47% to 68% with an increase in draw ratio. An increase in axial feed during the hot forming process resulted in higher formability (strains values of 0.55 major strain and -0.25 minor strain) and delayed failure. The analytical model prediction of bursting shows good agreement with the experimental results. The results provide an understanding of the orientation development in solid state extrusion of PP tubes as well as an understanding of tube formability, flow localization and fracture characteristics of PP tube from AF-HOTF process and other related
processes. / Thesis / Doctor of Philosophy (PhD)
|
208 |
Two phase flow visualization in evaporator tube bundles using experimental and numerical techniquesSchlup, Jason January 1900 (has links)
Master of Science / Department of Mechanical and Nuclear Engineering / Steven Eckels and Mohammad Hosni / This research presents results from experimental and numerical investigations of two-phase flow pattern analysis in a staggered tube bundle. Shell-side boiling tube bundles are used in a variety of industries from nuclear power plants to industrial evaporators. Fluid flow patterns in tube bundles affect pressure drop, boiling characteristics, and tube vibration. R-134a was the working fluid in both the experimental and computational fluid dynamics (CFD) analysis for this research. Smooth and enhanced staggered tube bundles were studied experimentally using a 1.167 pitch to diameter ratio. The experimental tube bundles and CFD geometry consist of 20 tubes with five tubes per pass.
High speed video was recorded during the experimental bundle boiling. Bundle conditions ranged in mass fluxes from 10-35 kg/m[superscript]2.s and inlet qualities from 0-70% with a fixed heat flux. Classification of the flow patterns from these videos was performed using flow pattern definitions from literature. Examples of smooth and enhanced bundle boiling high speed videos are given through still images. The flow patterns are plotted and compared with an existing flow pattern map. Good agreement was found for the enhanced tube bundle while large discrepancies exist for the smooth tube bundle.
The CFD simulations were performed without heat transfer with non-symmetrical boundary conditions at the side walls, simulating rectangular bundles used in this and other research. The two-phase volume of fluid method was used to construct vapor interfaces and measure vapor volume fraction. A probability density function technique was applied to the results to determine flow patterns from the simulations using statistical parameters. Flow patterns were plotted on an adiabatic flow pattern map from literature and excellent agreement is found between the two. The agreement between simulation results and experimental data from literature emphasizes the use of numerical techniques for tube bundle design.
|
209 |
Ovarian serous carcinoma: recent concepts on its origin and carcinogenesisLi, Jie, Fadare, Oluwole, Xiang, Li, Kong, Beihua, Zheng, Wenxin January 2012 (has links)
Recent morphologic and molecular genetic studies have led to a paradigm shift in our conceptualization of the carcinogenesis and histogenesis of pelvic (non-uterine) serous carcinomas. It appears that both low-grade and high-grade pelvic serous carcinomas that have traditionally been classified as ovarian in origin, actually originate, at least in a significant subset, from the distal fallopian tube. Clonal expansions of the tubal secretory cell probably give rise to serous carcinomas, and the degree of ciliated conversion is a function of the degree to which the genetic hits deregulate normal differentiation. In this article, the authors review the evidentiary basis for aforementioned paradigm shift, as well as its potential clinical implications.
|
210 |
An investigation into the axial capacity of eccentrically loaded concrete filled double skin tube columnsKoen, Johan Alexander 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: Concrete filled double skin tube (CFDST) columns is a new method of column construction. CFDST columns consists of two steel hollow sections, one inside the other, concentrically aligned. The cross-sections of the two hollow sections does not have to be the same shape. Concrete is cast in between the two hollow sections resulting in a CFDST. This study only considers CFDST columns constructed with circular steel hollow sections. The advantages of CFDST construction include:
● The inner and outer steel hollow sections replaces the traditional steel reinforcement that would be used in a normal reinforced concrete column. This reduces the construction time since there is no need to construct a reinforcing cage.
● The steel hollow sections acts as a stay in place formwork, eliminating the need for traditional formwork. This also reduces construction time.
● The steel hollow sections confine the concrete, making it more ductile and increasing its yield strength.
The objective of this study is to identify methods that can predict the axial capacity of eccentrically loaded circular CFDST columns. Methods chosen for the investigation are:
1. Finite element model (FEM). A model was developed to predict the behaviour of eccentrically loaded CFDST columns. The FE model uses a concrete material model proposed in literature for stub columns. The aim was to determine whether the material model is suited for this application.
2. The failure load of CFDST columns under concentric loading was calculated using a model obtained in literature. These capacities were compared to the experimental test results of eccentrically loaded CFDST columns to establish a correlation.
This study found that the concrete material model used does not adequately capture the behaviour resulting in the axial response of the column being too stiff. The difference between the eccentrically loaded experimental test results and the calculated concentrically loaded capacity showed a clear trend that could be used to predict the capacity of eccentrically loaded CFDST columns. / AFRIKAANSE OPSOMMING: Beton-gevulde dubbel laag pyp (BGDLP) kolomme is ‘n nuwe metode van kolom konstruksie. BGDLP kolomme bestaan uit twee staal pyp snitte, die een binne die ander geplaas met hul middelpunte opgelyn, die dwarssnit van die twee pype hoef nie dieselfde vorm te wees nie. Beton word dan in die wand tussen die twee pyp snitte gegiet. Die resultaat is ‘n hol beton snit. Hierdie studie handel slegs oor BGDLP kolomme wat met ronde pyp snitte verwaardig is. Die volgende voordele kan aan BGDLP toegeken word:
● Die binne en buite staalpype vervang die tradisionele staal bewapening was in normale bewapende-beton gebruik sou word. Dus verminder dit die tyd wat dit sal neem om die kolom op te rig.
● Die staalpypsnitte is ook permanente vormwerk. Dit doen dus weg met die gebruik van normale bekisting, wat ook konstruksie tyd spaar.
● Die buite-staalpypsnit bekamp die uitsetting van die beton onder las. Hierdie bekamping veroorsaak dat die beton se gedrag meer daktiel is en ‘n hoër falings spanning kan bereik.
Die doel van die studie is om metodes te identifiseer wat gebruik kan word om die aksiale kapasiteit onder eksentriese laste van BGDLP kolomme te bepaal. Twee metodes was gekies:
1. Eindige element model. ‘n Model was ontwikkel om die gedrag van BGDLP kolomme te voorspel. Die mikpunt was om te bepaal of ‘n beton materiaal gedrag model vanuit die literatuur gebruik kan word om BGDLP kolomme te modelleer.
2. Die swiglas van BGDLP kolomme onder konsentriese belasting was bereken vanaf vergelykings uit die literatuur. Hierdie swiglaste was vergelyk met die eksperimentele toets resultate vir eksentriese belaste BGDLP kolomme om ‘n korrelasie te vind.
Hierdie studie het bewys dat die beton materiaal model uit die literatuur kan nie gebruik word om die swiglaste van BGDLP kolomme te bepaal nie. Die model het die gedrag te styf gemodelleer. Die verskil tussen die berekende konsentriese belaste swiglas en die eksperimentele resultate van eksentriese BGDLP kolomme was voorspelbaar en kan gebruik word om die swiglas van eksentriese belaste BGDLP kolomme te voorspel.
|
Page generated in 0.0417 seconds