• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 514
  • 195
  • 144
  • 127
  • 95
  • 28
  • 27
  • 14
  • 13
  • 13
  • 13
  • 13
  • 13
  • 13
  • 11
  • Tagged with
  • 1403
  • 174
  • 144
  • 125
  • 124
  • 113
  • 78
  • 75
  • 73
  • 72
  • 71
  • 71
  • 69
  • 64
  • 61
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
871

Blast Retrofit of Reinforced Concrete Walls and Slabs

Jacques, Eric 01 March 2011 (has links)
Mitigation of the blast risk associated with terrorist attacks and accidental explosions threatening critical infrastructure has become a topic of great interest in the civil engineering community, both in Canada and abroad. One method of mitigating blast risk is to retrofit vulnerable structures to resist the impulsive effects of blast loading. A comprehensive re-search program has been undertaken to develop fibre reinforced polymer (FRP) retrofit methodologies for structural and non-structural elements, specifically reinforced concrete slabs and walls, subjected to blast loading. The results of this investigation are equally valid for flexure dominant reinforced concrete beams subject to blast effects. The objective of the research program was to generate a large volume of research data for the development of blast-resistant design guidelines for externally bonded FRP retrofit systems. A combined experimental and analytical investigation was performed to achieve the objectives of the program. The experimental program involved the construction and simulated blast testing of a total of thirteen reinforced concrete wall and slab specimens divided into five companion sets. These specimens were subjected to a total of sixty simulated explosions generated at the University of Ottawa Shock Tube Testing Facility. Companion sets were designed to study one- and two-way bending, as well as the performance of specimens with simply-supported and fully-fixed boundary conditions. The majority of the specimens were retrofitted with externally bonded carbon fibre reinforced polymer (CFRP) sheets to improve overall load-deformation characteristics. Specimens within each companion set were subjected to progressively increasing pressure-impulse combinations to study component behaviour from elastic response up to inelastic component failure. The blast performance of companion as-built and retrofitted specimens was quantified in terms of measured load-deformation characteristics, and observed member behaviour throughout all stages of response. The results show that externally bonded FRP retrofits are an effective retrofit technique to improve the blast resistance of reinforced concrete structures, provided that debonding of the composite from the concrete substrate is prevented. The test results also indicate that FRP retrofitted reinforced concrete structures may survive initial inbound displacements, only to failure by moment reversals during the negative displacement phase. The experimental test data was used to verify analytical techniques to model the behaviour of reinforced concrete walls and slabs subjected to blast loading. The force-deformation characteristics of one-way wall strips were established using inelastic sectional and member analyses. The force-deformation characteristics of two-way slab plates were established using commonly accepted design approximations. The response of all specimens was computed by explicit solution of the single degree of freedom dynamic equation of motion. An equivalent static force procedure was used to analyze the response of CFRP retrofitted specimens which remained elastic after testing. The predicted maximum displacements and time-to-maximum displacements were compared against experimental results. The analysis indicates that the modelling procedures accurately describe the response characteristics of both retrofitted and unretrofitted specimens observed during the experiment.
872

Development of experimental and numerical infrastructures for the study of compact heat exchangers and liquid overfeed refrigeration systems

Danov, Stoyan Viktorov 07 November 2005 (has links)
Se ha desarrollado y construido una infraestructura experimental orientada a la validación de modelos de intercambiadores compactos de aletas y tubos y sistemas de refrigeración con sobrealimentación de líquido. El objetivo ha sido la obtención de datos experimentales fiables, con condiciones geométricas y de contorno exactamente definidas, para poder compararlos inequívocamente con resultados de simulaciones numéricas. Se presentan los modelos matemáticos, objetivo de la validación, y una descripción detallada del circuito de aire, del refrigerante líquido, y del refrigerante de cambio de fase, que integran la infraestructura.Estos tres circuitos están encargados de asegurar condiciones estables y controladas para los prototipos ensayados y para el sistema de refrigeración con sobrealimentación de líquido, en un amplio rango de temperaturas, flujos másicos y potencias. El diseño permite el ensayo de prototipos de intercambiadores de calor con diferentes geometrías y dimensiones. Se presentan detalladamente los instrumentos de medida con sus precisiones, montaje, se describen también los componentes y los parámetros de la unidad de adquisición de datos.Especial atención se ha dedicado a la calibración de los instrumentos de medida como parte esencial del proceso de preparación de los ensayos. Se describe el proceso de estimación de las incertidumbres sistemáticas de los sensores calibrados. Se expone en detalle la formulación y la metodología adoptada para el análisis de incertidumbre de los resultados experimentales.El procesamiento y el análisis de los datos experimentales se ha realizado en forma automática con un código computacional especialmente desarrollado, encargado de calcular los resultados a partir de las variablas medidas, de llevar a cabo el análisis de incertidumbres detallado, y de comparar los resultados numéricos y experimentales.Se presentan resultados experimentales obtenidos con la infraestructura experimental desarrollada. Se presentan estudios detallados de intercambiadores de calor compactos en condiciones de enfriamiento de aire, utilizando refrigerante líquido y de cambio de fase. Se presentan también resultados del estudio experimental del sistema de refrigeración con sobrealimentación de líquido. Los resultados han sido comprobados y verificados a través de balances energéticos en todos los componentes, donde la misma magnitud física ha sido evaluada de mediciones independientes. Con el objetivo de permitir el uso mas general de los resultados experimentales se presentan también los datos crudos de las variables medidas durante los ensayos.Se ha propuesto una metodología de validación para el modelo de intercambiadores compactos, basada en comparaciones sistemáticas de resultados numéricos y experimentales. Estas comparaciones han sido analizadas en términos estadísticos con el objetivo de cuantificar las diferencias observadas y dar una evaluación global de las prestaciones del modelo numérico en las condiciones ensayadas. La metodología propuesta para la validación del modelo de intercambiadores compactos puede ser utilizada como base para metodologías de validación en general. / Experimental infrastructures intended for validation of compact heat exchanger models, and models of liquid overfeed refrigeration systems have been developed and constructed. The aim has been the obtaining of reliable experimental data from tests at exactly defined geometrical and boundary conditions, permitting the unequivocal comparisons with numerical simulation results. The mathematical models are presented and detailed description of the airhandling, the liquid refrigerant, and phase-changing refrigerant circuits integrating the experimental infrastructure is given.These three circuits are encharged to provide stable controlled conditions for the tested prototypes and the liquid overfeed system in the desired range of temperatures, fluid flows, and capacities. The design permits the accommodation of heat exchanger prototypes with different geometry and sizes.Detailed overview of the measuring instruments is presented, with their accuracies and mounting, and the components and parameters of the data acquisition system are described.Special attention has been paid to the calibration of the measuring instruments as an essential part of the test preparation. The process of estimation of the systematic uncertainties in the calibrated sensors measurements is described. The formulation and the methodology adopted for the uncertainty analysis of the experimental results is exposed in detail.The experimental data processing and analysis has been performed automatically with a specially developed program encharged with the calculation of the experimental results from the measured variables, the detailed uncertainty analysis, and the numerical to experimental results comparisons.Experimental results obtained with the developed infrastructure are presented. Detailed studies of compact heat exchangers under cooling conditions, using liquid and phase-changing refrigerants, are performed and presented. Results from the experimental studies of the liquid overfeed refrigeration system are also presented. The results have been checked and verified through energy balance checks for all the components where measurements of the same physical magnitude can be contrasted with independent measurements. In order to give more general use of the obtained experimental data, the raw measured variables during the tests are also presented.An experimental validation methodology for the compact heat exchanger model has been proposed, based on systematic comparisons between numerical and experimental results. The comparisons have been analysed in statistical terms in order to quantify the observed differences and to give global evaluation of the numerical model performance in the tested conditions. The methodology proposed for validation of the heat exchanger model can be used as a basis for validation methodology for numerical models in general.
873

Interaction Between Forming and the Crash Response of Aluminium Alloy S-Rails

Oliveira, Dino January 2007 (has links)
One of the principal energy absorbing structural components that influences the crashworthiness of a vehicle is the side-rail, which is also commonly referred to as an s-rail due to its shape that is reminiscent of an “s”. To improve the crashworthiness of a vehicle, in the wake of significant environmental pressures requiring vehicle light-weighting, the parameters that govern the crash response of the s-rail and the implications of light-weight material substitution need to be better understood. In this work, the main parameters that govern the crash response of an s-rail and the variables that influence them were identified and assessed through a combined experimental and numerical modelling programme. In particular, the as-formed properties of aluminium alloy s-rails, due to the tube bending and hydroforming fabrication route were examined. Tube bending, hydroforming and crash experiments were conducted to examine and assess the effects of initial tube thickness, strength, geometry, bend severity, work hardening, thickness changes and residual stresses on the crash response of the s-rail. The forming process variables, springback, thickness, strains, and force and energy response measured in the experiments were used to validate the finite element models developed herein. The validated numerical models of tube bending, hydroforming and crash provided additional insight and also allowed further investigation of the parameters governing the crash response of s-rails. The relevant parameters governing the crash response of s-rails were isolated and the basis for a set of design guidelines, in terms of maximizing energy absorption or minimizing mass, was established. The overall size is the most influential design parameter affecting the energy absorption capability of the s-rail, followed by the initial thickness, material strength, cross-sectional geometry, bend severity and hydroforming process employed, and finally boost in bending. The most significant conclusion made based on this research is that the effects of forming history must be considered to accurately predict the crash response of the s-rail. There are additional conclusions with respect to the tube bending and hydroforming processes, as well as s-rail crash response, that will contribute to improving the design of s-rails for better crashworthiness of vehicles.
874

Development of a Handheld Night Vision System

Karp, Jonas, Ek, Robert January 2009 (has links)
The task for this master thesis was to create a specification for a second prototype of Scandilumen´s handheld gated night vision system. Current prototype is analogue and is to be upgraded with a digital interface. The specification was to contain information about manufacturers and performance on critical components such as image intensifier tube, image sensor and display. Scandilumen have previous experience with CCD cameras and wanted to know if the CMOS technology were sensitive enough to work properly in gated systems where high sensitivity is critical. Different image processing techniques was analyzed to find out the possibility to enhance image quality with an FPGA built-in into the system. When the specification is implemented, Scandilumen will have a prototype up-to-date with a digital interface and real time image enhancement. / Uppdraget i denna magisteruppsats var att ta fram en specifikation för en andra prototyp av Scandilumens grindade mörkerkamera. Nuvarande prototyp är analog och skall uppgraderas till en digital variant med display och anslutningsmöjlighet till dator. Specifikationen skall innehålla uppgifter om vilka ingående komponenter som skall användas samt vilken prestanda de skall ha. Exempel på dessa komponenter är bildförstärkarrör, bildsensor och displayer. Stor vikt har lagts vid att avgöra vilken typ av bildsensor som skall ingå i systemet. Scandilumen har tidigare erfarenhet av CCD-kameror men ville undersöka om CMOS-tekniken var känslig nog för denna typ av applikation. En jämförelse gjordes mellan de olika teknikerna med fokus på de höga krav som ställs på känslighet. Dessutom analyserades olika typer av bildbehandling som är lämpliga för systemet och som också går att implementera i en FPGA på lämpligt sätt. Om specifikationen följs kommer Scandilumen ha en prototyp uppdaterad med ett digitalt format och den senaste tekniken.
875

Interaction Between Forming and the Crash Response of Aluminium Alloy S-Rails

Oliveira, Dino January 2007 (has links)
One of the principal energy absorbing structural components that influences the crashworthiness of a vehicle is the side-rail, which is also commonly referred to as an s-rail due to its shape that is reminiscent of an “s”. To improve the crashworthiness of a vehicle, in the wake of significant environmental pressures requiring vehicle light-weighting, the parameters that govern the crash response of the s-rail and the implications of light-weight material substitution need to be better understood. In this work, the main parameters that govern the crash response of an s-rail and the variables that influence them were identified and assessed through a combined experimental and numerical modelling programme. In particular, the as-formed properties of aluminium alloy s-rails, due to the tube bending and hydroforming fabrication route were examined. Tube bending, hydroforming and crash experiments were conducted to examine and assess the effects of initial tube thickness, strength, geometry, bend severity, work hardening, thickness changes and residual stresses on the crash response of the s-rail. The forming process variables, springback, thickness, strains, and force and energy response measured in the experiments were used to validate the finite element models developed herein. The validated numerical models of tube bending, hydroforming and crash provided additional insight and also allowed further investigation of the parameters governing the crash response of s-rails. The relevant parameters governing the crash response of s-rails were isolated and the basis for a set of design guidelines, in terms of maximizing energy absorption or minimizing mass, was established. The overall size is the most influential design parameter affecting the energy absorption capability of the s-rail, followed by the initial thickness, material strength, cross-sectional geometry, bend severity and hydroforming process employed, and finally boost in bending. The most significant conclusion made based on this research is that the effects of forming history must be considered to accurately predict the crash response of the s-rail. There are additional conclusions with respect to the tube bending and hydroforming processes, as well as s-rail crash response, that will contribute to improving the design of s-rails for better crashworthiness of vehicles.
876

Measurement of Finned-Tube Heat Exchanger Performance

Taylor, Creed 01 December 2004 (has links)
Finned-tube heat exchangers are predominantly used in space conditioning systems, as well as other applications requiring heat exchange between two fluids. One important widespread use is in residential air conditioning systems. These residential cooling systems influence the peak demand on the U.S. national electrical system, which occurs on the hot summer afternoons, and thereby sets the requirement for the expensive infrastructure requirement of the nations power plant and electrical distribution system. In addition to this peak demand, these residential air conditioners are major energy users that dominate residential electrical costs and environmental impact. The design of finned-tube heat exchangers requires the selection of over a dozen design parameters by the designer. The refrigerant side flow and heat transfer characteristics inside the tubes have been thoroughly studied. However, the air side flow around the tube bundle and through the fin gaps is much more complex and depends on over a dozen design parameters. Therefore, experimental measurement of the air side performance is needed. First this study built an experimental system and developed methodology for measuring the air side heat transfer and pressure drop characteristics of fin tube heat exchangers. This capability was then used to continue the goal of expanding and clarifying the present knowledge and understanding of air side performance to enable the air conditioner system designer in verifying an optimum fin tube condenser design. In this study eight fin tube heat exchangers were tested over an air flow face velocity range of 5 ?? ft/s (675-1600cfm). The raw data were reduced to the desired heat transfer and friction data, j and f factors. This reduced heat transfer and friction data was plotted versus Reynolds number and compared. The effect of fin spacing, the number of rows and fin enhancement were all investigated. The heat transfer and friction data were also plotted and compared with various correlations available from open literature. The overall accuracy of each correlation to predict experimental data was calculated. Correlations by C.C. Wang (1998b, 1999) showed the best agreement with the data. Wangs correlations (1998b, 1999) were modified to fit the current studys data.
877

Stem Cell Based Nerve Tissue Engineering On Guided Constructs

Yucel, Deniz 01 January 2009 (has links) (PDF)
Nerve injury is a serious clinical problem that has a direct impact on the quality of life. Nerve tissue engineering (NTE) is one of the most promising methods in human health care to restore the function of damaged neural tissues. The current state of the art involves the construction of a tissue engineered, nano or micropatterned 3-D nerve tube that has fibers or channels in the inside. The scope of this study is to construct a 3-D, biodegradable nerve tube which consists of an aligned, electrospun mat seeded with stem cells that is wrapped in a porous micropatterned film which contains support cells. In two separate approaches human mesenchymal stem cells (MSCs) and mouse neural stem cells (NSCs) were used. In the design with the MSCs, the micropatterned exterior part of the nerve tube contained undifferentiated MSCs as support cells and this was wrapped around the fibers seeded with MSCs which were induced to neural differentiation. In the other case, NSCs differentiated into astrocytes were used as support cells seeded on the micropatterned film and the mat was loaded with undifferentiated NSCs. Differentiation into neural cells and astrocytes were shown with immunocytochemistry and RT-PCR. The neuron-like MSCs and NSCs were shown to express neural marker &amp / #946 / -Tubulin III whereas astrocytes expressed glial fibrillary acidic protein (GFAP), an astrocyte marker. RT-PCR showed that early neural markers, nestin and Nurr 1, were expressed at passage 4 by undifferentiated MSCs and by MSCs induced to neural differentiation, while these markers were not expressed in undifferentiated MSCs at passages 2 and 3. The cells aligned along the axis of the micropattern of the film and along the axis of the fiber on the fibrous mat. This behavior was also maintained after construct formation. MTS and confocal microscopy revealed that the cells were viable and homogeneously distributed over the two parts of the scaffold. This indicates that the construct has a potential to be tested in vivo for nerve tissue engineering purposes.
878

Lead Determination By Flame Atomic Absorption Spectrometry Using A Slotted Quartz Tube Atom Trap And Metal Coatings

Demirtas, Ilknur 01 July 2009 (has links) (PDF)
Flame Atomic Absorption Spectrometry (FAAS) still keeps its importance despite the relatively low sensitivity / because it is a simple and economical technique for determination of metals. In recent years atom traps have been developed to increase the sensitivity of FAAS. Although the detection limit of FAAS is only at the level of mg/L, with the use of atom traps it can reach to ng/mL. Slotted quartz tube (SQT) is one of these atom traps, it is applied for determination of volatile elements / it is economical, commercially available and easy to use. In this study, a sensitive analytical method has been developed for the determination of lead with the help of SQT. Regarding the angle between the two slots of SQT, 120&deg / and 180&deg / configurations were used and the results were compared. There were three modes of SQT used. The first application was for providing longer residence time of analyte atoms in the measurement zone / 3 fold sensitivity enhancement was observed. The second mode was the usage of SQT for preconcentration of lead atoms. In the presence of a lean air-acetylene flame, analyte atoms were trapped in the inner surface of SQT for a few minutes. Then, by the help of a small volume (10-50 &amp / #956 / L) of Methyl isobutyl ketone (MIBK), analyte atoms were revolatilized and a rapid atomization took place. Using this mode, a sensitivity enhancement of 574 was obtained at a rather low (3.9 mL/min) suction rate / 1320 fold improvement was reached at higher sample suction rate (7.4 mL/min) for 5.0 min collection. The last mode involves coating of the inner surface of SQT with several kinds of transition metals. The best sensitivity enhancement, 1650 fold, was obtained by the Ta coated SQT. In addition, effects of some elements and anions on Pb signal in Tacoated-SQT-AT-FAAS were examined. Final step consists of surface analysis / chemical nature of Pb trapped on quartz and Ta surface, and the chemical nature of Ta on quartz surface were investigated by X-ray Photoelectron Spectroscopy (XPS) and Raman Spectroscopy.
879

Determination Of Cadmium Using Slotted Quartz Tube Atom Trap Atomic Absorption Spectrometry And Metal Coatings

Ozcan Gurbetoglu, Pelin Gulistan 01 July 2010 (has links) (PDF)
ABSTRACT DETERMINATION OF CADMIUM USING SLOTTED QUARTZ TUBE ATOM TRAP ATOMIC ABSORPTION SPECTROMETRY AND METAL COATINGS &Ouml / zcan Gurbetoglu, G. Pelin M.S., Department of Chemistry Supervisor: Prof. Dr. O. Yavuz Ataman July 2010, 76 pages Flame atomic absorption spectroscopy (FAAS) is a common technique for detecting metals and metalloids in environmental, biological and metallurgical samples. Although it is a rather old technique, it is still very reliable, simple to use and inexpensive. The technique can be used to determine the concentration of over 70 different metals in a solution. However, it has detection limits at mg/L levels. Some atom trapping methods have been developed to reach the detection limits of ng/mL levels. Slotted quartz tube (SQT) is one of these atom trapping methods. It is an important technique, since it is easy to use, applicable in all laboratories, commercially available and economical. This thesis consists of development of a sensitive method for cadmium with the help of SQT atom trap. In this study, it was used for two different purposes. One was for keeping the analyte atoms more in the light path / in other words, for increasing the residence times of analyte atoms in the measurement zone. This first application was provided a 2.9 times enhancement with respect to conventional FAAS. Second application was for trapping the analyte on the surface of the SQT, in other words, for performing on-line preconcentration of cadmium in SQT. In the presence of a lean flame, analyte samples were trapped and collected for a few minutes at a low suction rate. After finishing the collection period, analyte atoms were revolatilized with the help of a small volume of (10-50 &micro / L) methyl isobutyl ketone (MIBK) and a rapid atomization occurred. This introduction also altered the flame composition momentarily and analyte atoms were released from the surface of the SQT. Application of this method enhanced the sensitivity 2065 times with respect to conventional FAAS. Another approach to this type of atom trapping has been investigated also in this study, which was coating of SQT with some metals having low volatility. Therefore, some transition metals were coated to the surface of SQT and among them zirconium was selected as the best coating material as having the most sensitivity enhancement factor. That is why, rest of the study was performed with the Zr coated SQT. The enhancement was 3368 as compared with FAAS. Cd determination with this method provides LOD value of 8 pg/mL and Co value of 19 pg/mL. In order to see the effect of some other type of elements or ions on determination of cadmium, interference study was done.
880

Tellurium Determination By Flame Atomic Absorption Spectrometry Using A Slotted Quartz Tube Atom Trap And Metal Coatings

Osmanbasoglu, Mahmut 01 February 2011 (has links) (PDF)
Flame Atomic Absorption Spectroscopy (FAAS) has lover sensitivity than similar analytical methods, however it has an important place for analysis due to its easy application and economic practicability especially in metal determinations. In order to increase the sensitivity of FAAS from mg/L level to ng/L level, various atom trap systems have been used. One of these atom traps, Slotted Quartz Tube (SQT), which is easy, economical and useful for volatile element determination, is used in this study as a sensitive analytical method for determination of tellurium. In the study, determination of Te by SQT is handled in three different modules. First, only with SQT itself, longer residence time for Te atoms in the measurement zone is provided and consequently 3.2 fold sensitivity enhancement is obtained both for Te (VI) and Te (IV). In the second module, SQT is used for concentration of tellurium species in a lean flame by sending the analyte into SQT for a definite time and trapping them on the inner surface of the SQT. After trapping the analyte, in order to determine the Te concentration, a small volume (10-50 &micro / L) of organic solvent such as methyl ethyl ketone (MEK) is introduced to the flame for revolatilization and a rapid atomization of Te on the surface is provided. In this trapping method, for 5 minutes collection with a 6 mL/min suction rate, 143 fold enhancement for Te (VI) and 142 fold enhancement for Te (IV) were obtained. In the third module, different from the second one, the inner surface of the SQT is coated with different metals for increasing the amount of Te trapped on the surface and the best enhancement for tellurium is obtained with Tantalum-coated SQT with 252 fold enhancement for Te (VI) and 246 fold enhancements for Te (IV). All improvements are calculated according to the signals obtained in FAAS method. Separate calibration plots were used for Te (IV) and Te (VI).

Page generated in 0.0325 seconds