• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 98
  • 41
  • 20
  • 10
  • 7
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 206
  • 206
  • 100
  • 63
  • 51
  • 51
  • 33
  • 32
  • 30
  • 28
  • 27
  • 23
  • 23
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Internalization of Extracellular ATP by Cancer Cells and its Functional Roles in Cancer Drug Resistance

Wang, Xuan January 2017 (has links)
No description available.
82

Capability of the Tumor Microenvironment to Attract a Precursor of B-cells and Dendritic Cells from Bone Marrow

Nandigam, Harika 26 July 2011 (has links)
No description available.
83

Genetic Contributions of the Tumor Microenvironment in Breast Cancer Metastasis

Werbeck, Jillian Lee 25 July 2011 (has links)
No description available.
84

Understanding the Role of Stromal PTEN Regulated miR-101 and miR-130b in Tumor Microenvironment

Biyik, Rumeysa 29 August 2012 (has links)
No description available.
85

Phenotypical Analysis of Tumor Microenvironment

Raman, Sundaresan 20 December 2012 (has links)
No description available.
86

The Impact of Macrophage Polarity and the Tumor Microenvironment on NK Cell Phenotype and Function

Krneta, Tamara 10 1900 (has links)
<p>NK cells play a pivotal role in tumor rejection; however, once present in the tumor microenvironment, they are characterized by decreased cytotoxicity and reduced expression of activating receptors. The mechanisms governing the inactivation of NK cells within tumors remain poorly understood. Since tumor associated macrophages (TAMs) are a highly abundant and suppressive cell type within tumors, we hypothesized that they are capable of altering the function of NK cells. Following the co-culture of alternatively activated macrophages (M2) or TAMs with NK cells we observed that the expression of the cytotoxic marker CD27 on NK cells was down-regulated as well as the ability of these cells to kill YAC-1 cells in a killing assay. We have demonstrated that the mechanism by which M2 cells inhibit NK cells is TGF-β dependent. Notably, the developmental stage of NK cells after interaction with TAMs was altered and the NK cells became phenoytpically mature and potentially exhausted (CD27<sup>low</sup>CD11b<sup>high</sup>). This prompted our interest in examining the developmental stage of NK cells from polyoma MT antigen (pyMT) transgenic mouse (MMTV-pMT) breast tumors. Interestingly, in contrast to the <em>in vitro</em> results, we have shown that NK cells isolated from pyMT tumors are developmentally immature; however maintain their maturity within the spleen. Their immature phenotype correlates well with their decreased expression of perforin, granzyme, and NKp46. Both our <em>in vitro</em> studies with TAMs and our <em>in vivo</em> developmental studies using the pyMT model demonstrate that NK cells are altered by their surroundings. A better understanding of how NK cells are modified by the tumor microenvironment will help to develop strategies aimed at bolstering immune responses against tumors.</p> / Master of Science (MSc)
87

ADAPTIVE EVENTS IN THE TUMOR LIMIT THE SUCCESS OF CANCER IMMUNOTHERAPY

McGray, Robert AJ 04 1900 (has links)
<p>Pre-clinical and clinical data strongly support the use of immunotherapies for cancer treatment. Cancer vaccines offer a promising approach, however, the outcomes of clinical vaccine trials have been largely disappointing, prompting a need for further investigation. Using the B16F10 murine melanoma, we have investigated the local events within growing tumors following recombinant adenovirus immunization. In chapter 2, we investigated the ability of a pre-clinical vaccine to elicit only transient tumor growth suppression. We observed that tumors were initially infiltrated by a small number of highly functional tumor-specific CD8+ T cells following vaccination that instigated a rapid adaptive response in the tumor that suppressed local immune activity. In chapter 3, we questioned whether increasing the rate and magnitude of early immune attack would result in more robust tumor attack prior to tumor adaptation. Increasing the rate of tumor-specific CD8+ T cell expansion following vaccination resulted in tumor regression and durable cures in approximately 65% of treated mice. Further analysis revealed that tumor regression correlated with an early burst in immune attack that outpaced tumor adaptation. In chapter 4, we explored whether the same vaccine could be improved when combined with immunomodulatory antibodies. Vaccination combined with anti 4-1BB and anti PD-1 resulted in complete tumor regression and durable cure of >70% of treated animals and was associated with increased local immune activity. Gene expression profiling revealed a unique gene signature associated with the curative treatment, which was also associated with positive outcome in human melanoma patients. The described research sheds new light on mechanisms that limit the efficacy of therapeutic cancer vaccines. Namely, rapid tumor adaptation, triggered by early vaccine-induced CD8+ T cells, acts to suppress the local immune response prior to maximal immune attack. Strategies to overcome these adaptive processes should therefore be considered in future vaccine design.</p> / Doctor of Philosophy (Medical Science)
88

A proteomics study to investigate the role of the neural niche in the development of metastatic HER2+ breast cancer

Ahuja, Shreya 13 June 2022 (has links)
Advanced stage tumors can acquire the ability to divide uncontrollably, invade the surrounding matrix, and circulate through the bloodstream or lymphatic system to distant organs in a process known as metastasis. The brain, which is shielded from the environment by the blood brain barrier, offers an immunocompetent lodging spot for the circulating cancer cells. Therefore, it is a "popular" destination for metastasized cancers which even surpass the incidents of primary brain tumors. It is hypothesized that the disseminated cancer cells engage with the host cells of the perivascular neural niche in a poorly understood crosstalk of molecular factors, that in turn augment the metastatic colonization of cancer cells. A better understanding of this crosstalk is indispensable to apprehending the complexity of the metastasis process, and to facilitating the discovery of biomarkers that predict metastatic potential and improve patient prognosis. The larger goal of this study was to adopt a mass spectrometry-based systems biology approach to investigate the molecular mechanisms and regulatory networks that underlie the complex phenomenon of breast cancer propagation at the brain metastatic site. To achieve this, the study was divided in three sub-projects designed around the following objectives, i.e., (a) to comprehensively characterize the protein landscape of the neural niche or the brain microenvironment comprised of astrocytes, microglia and endothelial cells, (b) to explore the immunological protein networks activated in microglia cells upon stimulation with anti-inflammatory cytokines released by tumor cells in the brain, and (c) to investigate the protein-level changes elicited in HER2+ breast cancer cells when grown under conditions that simulate the brain microenvironment in-vitro. Detailed characterization of the neural niche enabled us to propose molecular mechanisms that allow for the seeding and outgrowth of metastasized cancer cells in the brain. The study further provided novel insights into the signaling networks that regulate the immune functions of the microglia and their role during cancer development. Lastly, an in-depth investigation of breast cancer cells cultured in the presence of neural niche factors revealed potential novel mechanisms of cancer cell dormancy during metastasis. Altogether, large-scale proteomics data generated in this work will help clarify the mechanisms of metastatic cancer development, and will lay the groundwork for future studies that aim at the discovery of novel biomarkers and druggable targets for the treatment of brain metastatic cancers. / Doctor of Philosophy / In the US, the incidence of breast cancer ranks only second to lung cancer, and the primary cause for almost all cancer related deaths is the development of cancer metastasis in patients. The process of metastasis involves cancer cells leaving the primary tumor, entering the bloodstream or the lymphatic system, and spreading to other parts of the body during advanced stages of the disease. The brain is a common metastatic site for cancer cells to form a secondary tumor. Previous research has found that it is the brain cells which support the progression of secondary tumors in the central nervous system by releasing protein molecules that favor the survival and growth of disseminated cancer cells. Brain cells, including endothelial cells (that form the blood vessels), astrocytes (that regulate brain development), and microglia (that are the immune cells of the brain), are the first to respond to metastasized cancer cells. A better understanding of the behavior of these cells and of their signaling molecules which support the process of cancer metastasis can help us discover new drug targets to treat cancer patients. This study had three main objectives, i.e., (a) to profile the protein make-up of brain cells and identify specific proteins that support cancer development in the brain, (b) to investigate the changes in microglial proteins when these cells are exposed to conditions that simulate cancerous growth in the brain, and (c) to explore the proteins that become active in breast cancer cells when they are subjected to conditions that simulate the brain microenvironment. To accomplish this, we used a high-throughput technology called mass spectrometry, that allows for the identification of thousands of proteins in a sample at any given time. Overall, the study provided novel insights into the biological mechanisms of secondary tumor formation, and into the early response of breast cancer cells when they encounter unfamiliar conditions in the brain. The work further supports the discovery of specific proteins that can be targeted in anti-cancer therapies.
89

N-(3-Oxododecanoyl)-L-Homoserine Lactone in the Breast Tumor Microenvironment

Balhouse, Brittany Nicole 12 June 2017 (has links)
The tumor microenvironment is a well-recognized contributor to cancer progression in solid tumors. Cancer cell interactions with abnormal extracellular matrix, tumor associated immune and stromal cells, and aberrant fluid flow all contribute to cancer progression. Breast tumors are often characterized by a dense collagenous stroma and a hypoxic core. A recently identified and little understood component of the breast tumor microenvironment is the breast microbiome. The work described here elaborates on the importance of the tumor microenvironment in cancer progression and demonstrates the importance of studying cancer-microbiome interactions in the context of tumor microenvironmental stimuli. / Master of Science / One of the major barriers to effective cancer treatment is the environment is which cancer grows. Tumors insulate themselves in a thick protein structure that leads to a stiffening of the breast tissue. In addition, irregular tumor-associated blood vessels lead to poor blood flow, and therefore a lack of oxygen, in the center of the tumor. These and other characteristics of tumors create an environment in which cancer cells are resistant to current anti-cancer therapies and thereby allows them to flourish. It was recently discovered that, contrary to previous belief, there are resident bacteria present in normal and cancerous breast tissue. The role they play in controlling cancer development and progression in the tumor is unknown. The work described here elaborates on the tumor environmental barriers to current anti-cancer therapies and shows how one bacterial produced compound may interact with other features of the tumor environment in order to control breast cancer survival.
90

Exploring Interactions Between Malignant Brain Cancer Cells and the Tumor Microenvironment Following High-Frequency Irreversible Electroporation

Murphy, Kelsey Rose 30 July 2024 (has links)
High-frequency irreversible electroporation (H-FIRE) is a novel tumor ablation therapeutic that applies bipolar, high-frequency pulsed electric fields to tumors, triggering the formation of irreversible membrane pores and to induce tumor cell death. H-FIRE has demonstrated pre-clinical and clinical utility as a therapeutic for brain tumors, including gliomas. H-FIRE has been shown to induce precise, uniform ablation within the tumor tissue, as well as local changes to the tumor microenvironment and systemic changes to the immune landscape. Namely, disruption of the peritumoral blood-brain barrier (BBB) following H-FIRE ablation of brain tumors, and infiltration and activation of the innate immune system are clinically observed following H-FIRE tumor ablation. Such effects persist long after death of the treated tumor, and therefore an understanding of the mechanisms underlying these local and systemic changes are critical for the development of H-FIRE. Using in vitro models of glioma and lung carcinoma-derived brain metastases, we investigate the interactions between cancer cells that have been ablated with H-FIRE and the brain tumor microenvironments. Specifically, we demonstrate that H-FIRE-treated cancer cells can recover treatment-induced damage and proliferative capacity after treatment with specific electric field doses, while higher doses inhibit such recovery. This suggests that after H-FIRE ablation of brain tumors, tumor cells can still secrete factors to trigger alterations in their local and systemic environments. We then specifically investigate the role of tumor-derived extracellular vesicles (TDEVs) in mediating these changes, namely pBBB disruption and changes in innate immunity. We find that, following H-FIRE ablation of brain cancer cells, treated cells immediately release TDEVs that disrupt the blood-brain barrier (BBB) endothelium in vitro, and are uniquely internalized by cerebral endothelial cells in vitro, despite reduced release of TDEVs after H-FIRE. We further demonstrate that H-FIRE significantly alters the proteomic payloads of TDEVs. When TDEVs released by sham- and H-FIRE-treated glioma cells are delivered to healthy rats, only TDEVs released by H-FIRE-ablated cells are retained in the brain, suggesting changes to TDEV organotropism after H-FIRE ablation of glioma. Further, once retained in the brain, these post-H-FIRE TDEVs cluster near cerebral endothelial cells, similarly to in vitro. Although the TDEVs released by H-FIRE ablated glioma cells do not disrupt the BBB in vivo, Iba1+ cells were increased in the brains of rats that received TDEVs released by H-FIRE-ablated glioma cells. Together, these data suggest that H-FIRE immediately alters the secretion and proteome of TDEVs, facilitating changes in TDEV organotropism and cellular tropism and immune cell recruitment to the tumor microenvironment. Together, this research indicates mechanisms by which tumor cells continue to modulate their local and systemic environments via the action of TDEVs, which is critical information for the continued development of H-FIRE and its optimization with adjuvant therapeutics for the treatment of malignant brain tumors. / Doctor of Philosophy / All cells secrete extracellular vesicles, which are packets of information that function as communication highways between cells. In cancer, tumor-derived extracellular vesicles (TDEVs) reprogram local and distant cells to support tumor growth. However, they have also been shown to change local and systemic functions, such as blood vessel function and immune response, after tumors are treated with therapeutics. Therefore, a full understanding of the role of TDEVs in how tumors communicate with the body after cancer treatment is necessary when developing new anti-cancer therapeutics. Here, in developing high-frequency irreversible electroporation (H-FIRE), a novel anti-tumor therapeutic for the treatment of malignant brain tumors, we explore how TDEVs released by brain cancer cells treated with H-FIRE interact with various cell types and structures in the body, and how these interactions may affect the response to treatment. Using a glioma model of primary brain cancer, and a lung carcinoma model of brain metastases, we first explore how tumor cells may be able to recover from damage after treatment with H-FIRE. We discover that brain cancer cells treated with specific doses of H-FIRE recover cell damage and continue to proliferate, but cells treated with higher doses of H-FIRE cannot recover these functions. The fact that tumor cells may be able to recover after H-FIRE suggests that cancer cells may still secrete factors, such as TDEVs, that interact with cells in the microenvironment after tumor treatment. We investigated the role of TDEVs released by brain cancer cells treated with H-FIRE to determine whether they cause changes in surrounding cells and structures in the brain cancer microenvironment. We determined that brain cancer cells treated with H-FIRE release TDEVs that carry proteins different from those carried by TDEVs routinely released by untreated cells. We further found that these TDEVs disrupt the blood-brain barrier (BBB) endothelium in vitro, and are uniquely internalized by cells of the endothelium. When these TDEVs were administered to the brains of healthy rats, they were retained in the brain, clustered near the endothelium, and recruited immune cells from circulation into the brain. Conversely, TDEVs that were routinely released from the brain cancer cells, in the absence of H-FIRE treatment, exhibited none of these functions. Taken together, these results show that H-FIRE changes TDEVs in numerous ways: after H-FIRE, the TDEVs may gravitate toward particular organs and cell types, and recruit immune cells. All of these changes can impact the overall therapeutic response after H-FIRE, and may also be specifically optimized and targeted with additional therapeutics to make H-FIRE more effective for brain cancer.

Page generated in 0.0756 seconds