• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 3
  • Tagged with
  • 41
  • 41
  • 26
  • 21
  • 14
  • 11
  • 10
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Three-Dimensional Numerical Simulation of Film Cooling on a Turbine Blade Leading-Edge Model

Stenger, Douglas 20 April 2009 (has links)
No description available.
12

Computational Fluid Dynamics Analysis of the Combustion Process for the TJT3000 Micro Jet Turbine Engine

Harden, Marcus A., II 27 December 2021 (has links)
No description available.
13

Simultaneous multi-design point approach to gas turbine on-design cycle analysis for aircraft engines

Schutte, Jeffrey Scott 06 April 2009 (has links)
Gas turbine engines for aircraft applications are required to meet multiple performance and sizing requirements, subject to constraints established by the best available technology level. The performance requirements and limiting values of constraints that are considered by the cycle analyst conducting an engine cycle design occur at multiple operating conditions. The traditional approach to cycle analysis chooses a single design point with which to perform the on-design analysis. Additional requirements and constraints not transpiring at the design point must be evaluated in off-design analysis and therefore do not influence the cycle design. Such an approach makes it difficult to design the cycle to meet more than a few requirements and limits the number of different aerothermodynamic cycle designs that can reasonably be evaluated. Engine manufacturers have developed computational methods to create aerothermodynamic cycles that meet multiple requirements, but such methods are closely held secrets of their design process. This thesis presents a transparent and publicly available on-design cycle analysis method for gas turbine engines which generates aerothermodynamic cycles that simultaneously meet performance requirements and constraints at numerous design points. Such a method provides the cycle analyst the means to control all aspects of the aerothermodynamic cycle and provides the ability to parametrically create candidate engine cycles in greater numbers to comprehensively populate the cycle design space from which a "best" engine can be selected. This thesis develops the multi-design point on-design cycle analysis method labeled simultaneous MDP. The method is divided into three different phases resulting in an 11 step process to generate a cycle design space for a particular application. Through implementation of simultaneous MDP, a comprehensive cycle design space can be created quickly for the most complex of cycle design problems. Furthermore, the process documents the creation of each candidate engine providing transparency as to how each engine cycle was designed to meet all of the requirements. The simultaneous MDP method is demonstrated in this thesis on a high bypass ratio, separate flow turbofan with up to 25 requirements and constraints and 9 design points derived from a notional 300 passenger aircraft.
14

Multi-Scale Flow and Flame Dynamics at Engine-Relevant Conditions

John Philo (12226004) 20 April 2022 (has links)
<div>The continued advancement of gas turbine combustion technology for power generation and propulsion applications requires novel techniques to increase the overall engine cycle efficiency and improved methods for mitigating combustion instabilities. To help address these problems, high-speed optical diagnostics were applied to two different experiments that replicate relevant physics in gas turbine combustors. The focus of the measurements was to elucidate the effect of various operating parameters on combustion dynamics occurring over a wide range of spatio-temporal flow and chemical scales. The first experiment, VIPER-M, enabled the investigation of coupling mechanisms for transverse instabilities in a multi-element, premixed combustor that maintains key similarities with gas turbine combustors for land based power generation. The second experiment, COMRAD, facilitated the study of the effect of fuel heating on the combustion performance and dynamics in a liquid-fueled, piloted swirl flame typical of aviation engine combustors. </div><div> </div><div><br></div><div>Two different injector lengths were tested in the VIPER-M experiment, and high-speed CH* chemiluminescence imaging and an array of high-frequency pressure transducers were used to characterize the overall combustor dynamics. For all conditions tested, the longer injector length configuration exhibited high-amplitude instabilities, with pressure fluctuations greater than 100% of the mean chamber pressure. This was due to the excitation of the fundamental transverse mode, with a frequency around 1800 Hz, as well as multiple harmonics. Shortening the injector length significantly lowered the instability amplitudes at all conditions and excited an additional mode near 1550 Hz for lower equivalence ratio cases. The delineating feature controlling the growth of the instabilities in the two injector configurations was shown to be the coupling between the transverse modes in the chamber and axial pressure fluctuations in the injectors.</div><div> </div><div><br></div><div>Heated fuels were introduced into the COMRAD experiment, and simultaneous 10 kHz stereoscopic particle image velocimetry and OH* chemiluminescence imaging were performed over a range of equivalence ratios and combustor pressures to study the influence of fuel temperature on the flow and flame structure. The main flame was found to move upstream as the fuel was heated, while no changes in the pilot flame location were observed in the field of view at the exit of the injector. The upstream shift of the main flame corresponded to a local increase in the axial velocity, which caused the shear layer between the pilot/main flames and the central recirculation zone to move downstream. Direct comparison of the mean velocity fields relative to the mean flame location showed that heating the fuel caused the velocity normal to the flame front to increase, which is indicative of an increase in flame speed. The changes to the fuel injection and chemical kinetics help explain the local changes to the flow and flame structure, which contribute to an overall increase in combustion efficiency as well as NO<sub>x</sub> emissions.</div><div> </div><div><br></div><div>Lastly, the effect of fuel injection temperature on the presence of an 800 Hz combustion instability in the COMRAD experiment was investigated. High-frequency pressure and high-speed chemiluminescence measurements revealed a decrease in the instability amplitude as the fuel was heated. The coupling between the fuel flow and the unsteady heat release was studied using independent 10 kHz stereoscopic particle image velocimetry and 10 kHz Mie scattering measurements. The variations in the fuel flow entering the combustor over the acoustic cycle decreased as the instability amplitude weakened. 100 kHz burst-mode, two-component particle image velocimetry was then applied to the unstable condition with ambient temperature fuel. This measurement was capable of resolving both the large-scale changes to the structure of the inner recirculation zone occurring at 800 Hz as well as the time-evolution of small-scale vortex structures. The vortices were shown to correspond to a characteristic frequency in the range of 4-5.5 kHz, and the strength of the vortex structures fluctuated with the global 800 Hz combustion dynamics. These results highlight the importance of performing measurements capable of resolving the wide range of scales present in the flow-fields typical of gas turbine combustors to improve current understanding of flame-flow coupling mechanisms.</div>
15

Unsteady Effects of a Pulsed Blowing System on an Endwall Vortex

Donovan, Molly Hope 04 June 2019 (has links)
No description available.
16

Characterization of Swirling Flow in a Gas Turbine Fuel Injector

Ghulam, Mohamad 21 October 2019 (has links)
No description available.
17

A STUDY OF NON-CONTACTING PASSIVE-ADAPTIVE TURBINE FINGER SEAL PERFORMANCE

Marie, Hazel January 2005 (has links)
No description available.
18

DYNAMIC SIMULATION OF TURBINE ENGINE USED WITH MOLTEN CARBONATE FUEL CELL FOR POWER GENERATION IN THE MEGAWATT RANGE

Gutierrez, Carlos Eduardo January 2013 (has links)
No description available.
19

Study of Steady-State Wake Characteristics of Variable Angle Wedges

Eddy, Grant Lee 28 September 2001 (has links)
Current methods of creating inlet total pressure distortion for testing in gas turbine engines are only able to simulate steady-state distortion patterns. With modern military aircraft it is becoming necessary to examine the effects of transient inlet distortion on engines. One alternative being evaluated is a splitting airfoil that is essentially a wedge that can be set at different opening angles. An array of such devices would be placed in front of the engine for testing that would be capable of creating steady-state distortion patterns as well as transient distortion patterns by changing the opening angle of the airfoils. The work here analyzes the steady-state wake characteristics of some of the splitting airfoil concepts. Single-wedge tests were conducted with various opening angles in an attempt to classify the various aspects found in the wake pattern. It was found that the wake has completely different characteristics with larger opening angles. In addition, several different combinations of wedges were also examined to see if single wedge analysis could be applied to arrays of wedges. Analysis was done on combinations of wedges aligned vertically as well as combinations that were done horizontally. It was found that single wedge characteristics change considerably when different wake patterns interact with each other / Master of Science
20

Development Of A High-fidelity Transient Aerothermal Model For A Helicopter Turboshaft Engine For Inlet Distortion And Engine Deterioration Simulations

Novikov, Yaroslav 01 June 2012 (has links) (PDF)
Presented in this thesis is the development of a high-fidelity aerothermal model for GE T700 turboshaft engine. The model was constructed using thermodynamic relations governing change of flow properties across engine components, and by applying real component maps for the compressor and turbines as well as empirical relations for specific heats. Included in the model were bleed flows, turbine cooling and heat sink effects. Transient dynamics were modeled using inter-component volumes method in which mass imbalance between two engine components was used to calculate the inter-component pressure. This method allowed fast, high-accuracy and iteration-free calculation of engine states. Developed simulation model was successfully validated against previously published simulation results, and was applied in the simulation of inlet distortion and engine deterioration. Former included simulation of steady state and transient hot gas ingestion as well as transient decrease in the inlet total pressure. Engine deterioration simulations were performed for four different cases of component deterioration with parameters defining engine degradation taken from the literature. Real time capability of the model was achieved by applying time scaling of plenum volumes which allowed for larger simulation time steps at very little cost of numerical accuracy. Finally, T700 model was used to develop a generic model by replacing empirical relations for specific heats with temperature and FAR dependent curve fits, and scaling T700 turbine maps. Developed generic aerothermal model was applied to simulate steady state performance of the Lycoming T53 turboshaft engine.

Page generated in 0.0508 seconds