Spelling suggestions: "subject:"turbines hydraulique"" "subject:"turbines hydraulic""
21 |
Investigation of the self-excited vibrations in a Francis runner in transient conditions of load rejectionCôté, Philippe 23 April 2018 (has links)
Tableau d'honneur de la Faculté des études supérieures et postdorales, 2015-2016 / Les travaux réalisés dans le cadre de ce mémoire de maîtrise visent à décrire la source hydraulique de vibrations mesurées lors de la mise en service d’une roue Francis. Lors de l’essai de rejet de charge à partir de la puissance maximale, il a été relevé que la roue subissait des vibrations autoexcitées à l’une de ses fréquences naturelles. L’objectif de ces travaux est d’identifier le phénomène hydraulique causant l’entrée en vibrations auto-excitées de la roue submergée. Puisque la cavitation semble jouer un rôle dans cette problématique, les capacités du solveur fluide ANSYS CFX à simuler de la cavitation instationnaire ont été évaluées. De ce fait, deux géométries ayant été étudiées expérimentalement ont été simulées. Cette étude a permis de conclure que l’approche homogène, plus stable et couramment utilisée dans la littérature, ne permet pas de reproduire de façon fiable les fluctuations de pression causées par l’instationarité des cavités de vapeur. Il a cependant été montré que les simulations permettent de prédire la forme, la localisation ainsi que les mécanismes entraînant la présence de vapeur dans l’écoulement. De plus, il a été demontré que la cavitation est un phénomène particulièrement sensible et sujet à répondre en phase à une excitation oscillatoire, par exemple la vibration de la roue. Les simulations numériques réalisées durant différentes phases du rejet de charge transitoire ont entre autres permis d’identifier que lorsque les vibrations apparaissent, une forte région de vapeur se crée au bord de fuite de l’aubage, près du plafond. En augmentant le temps de fermeture du distributeur, le partenaire industriel a réussis à éliminer les vibrations problématiques. En réalisant des simulations avec différents temps de fermeture, il a été démontré que la solution proposée permet d’augmenter le niveau de pression dans le canal inter-aubes, réduisant ainsi la quantité de vapeur s’y trouvant. Cela laisse suggérer que la cause d’entrée en vibrations de la roue est la cavitation se formant durant le rejet de charge. Cependant, il est à noter que les différentes méthodologies proposées n’ont pas permis d’obtenir les fréquences d’excitation mesurées expérimentalement, essentiellement à cause de limitations liées à la modélisation de la cavitation. / The work presented in this master degree thesis aims to identify the hydraulic cause of mechanical vibrations measured during the commissioning of a Francis runner. During the test of load rejection from maximal power output regime, it was noticed that the runner entered a state of self-excited vibrations at one of its natural frequencies. The purposes of this work is to investigate the hydraulic phenomenon which causes the submerged runner to enter self-excited vibrations. Since cavitation is expected to play a role in this problematics, there was a need to evaluate the capabilities of the fluid solver ANSYS CFX to solve unsteady cavitating flows. Two geometries which had been investigated experimentally were thus simulated. It was concluded that the homogeneous approach, more robust and widely used in the literature, does not lead to a reliable prediction of the pressure fluctuations caused by cavitation. It was however shown that the simulations allowed to predict the shape, the location as well as the physical mechanisms responsible for the presence of vapor in the flow. It was also demonstrated that cavitation is a phenomenon particularly sensitive and subject to respond in phase to oscillatory perturbations, for instance the vibrating runner. The numerical simulations carried out at different phases of the load rejection transient have established that when the vibrations appear, a wide region of vapor forms at the trailing edge of the blade, near the crown. By increasing the distributor closing time, the industrial partner in this work had success in eliminating such problematic vibrations. In our case, when performing simulations with increased closing times, it was demonstrated that the solution proposed allows to increase the pressure level in the inter-blade channel, lowering the quantity of vapor it contains. This strongly suggests that the hydraulic cause of the vibrations is the cavitation forming during the load rejection. However, one can note that the proposed methodologies have not permitted to predict the excitation frequencies as measured experimentally, essentially due to limitations in the modeling of cavitation.
|
22 |
Analyse expérimentale et numérique de l'écoulement dans le canal d'entrée d'un modèle de turbine bulbeLongchamp, Quentin 20 April 2018 (has links)
Ce travail de maitrise s’inscrit dans le cadre des activités de recherche du Laboratoire de Machines Hydraulique de l’Université Laval et a pour objectif la caractérisation de l’écoulement dans le canal d’entrée d’un modèle de turbine hydraulique de type bulbe. La représentation des champs de vitesses moyennes et des fluctuations sous différentes conditions d’opérations ont été obtenues en utilisant un système de mesure LDV. Un débalancement du débit et des structures tourbillonnaires dans le canal d’entrée ont été mises en évidence. La conception d’une géométrie d’obstacle provoquant une non-uniformité dans le canal d’entrée a été développée en tenant compte des prédictions de simulations numériques. Des simulations numériques de la machine complète en régime stationnaire et instationnaire selon deux configurations géométriques ont été menées pour déterminer l’influence des conditions d’entrée de l’écoulement sur les performances de la machine. Des comparaisons entre les quantités expérimentales et numériques ont été réalisées. / This work is part of the research activities of the Hydraulic Machines Laboratory of the Laval University and its objective is to contribute to the characterisation of the intake flow in a model of a bulb turbine. The representation of the mean velocity fields and the turbulent fluctuations under predefined operating conditions were obtained by the use of a LDV measurement system. Mass-flow imbalance and vortices in the intake channel were identified. The conception of an obstacle geometry causing a non-uniformity in the intake channel has been developed taking in consideration the predictions of numerical simulation. Numerical simulations of the complete machine for both steady and unsteady case were performed with and without obstacle in the intake channel. The objective of this process was to evaluate the influence of the intake flow condition on the turbine performances. Moreover, comparisons between experimental and numerical quantities were made.
|
23 |
Prediction of erosion damages in hydraulic machines for hydro-abrasive erosionBoden, Wiebke 20 September 2017 (has links)
L’énergie hydraulique, où l’énergie cinétique de l’eau est transformée en énergie électrique, représente une contribution importante aux énergies renouvelables. L’eau qui passe par les turbines hydrauliques contient toujours une partie solide, par exemple du sable et de l’argile. Ces sédiments peuvent atteindre des niveaux de concentration élevés, ce qui nuit considérablement à la structure de la turbine par un mécanisme d’endommagement appelé érosion hydro-abrasive. Des types de turbine impliquant des vitesses d’écoulement très élevées, comme les turbines Pelton, sont particulièrement sensibles à l’érosion hydro-abrasive. Les simulations numériques présentent un moyen efficace d’étudier le sujet de l’érosion hydro-abrasive dans les turbines Pelton car elles permettent facilement la variation des nombreux paramètres. Ainsi, une réponse immédiate aux questions opérationnelles, de conception ou d’optimisation peut être obtenue. Cependant, il a été démontré que l’application des modèles d’érosion généraux et souvent utilisés ne fournit pas de résultats corrects en raison des propriétés particulières du matériel et de l’écoulement des turbines Pelton. Par conséquent, ce travail étudie le potentiel de la modélisation de l’érosion directe basée sur des principes fondamentaux. Cela implique que le mouvement des sédiments dans le fluide est simulé, leurs paramètres au moment de l’impact enregistrés et ensuite l’endommagement macroscopique global du matériel calculé sur la base des simulations de structure en microéchelle. Une formulation très appropriée pour les simulations fluides dans les turbines Pelton est une méthode sans maillage, plutôt nouvelle, qui s’appelle Smoothed Particle Hydrodynamics (SPH). Par conséquent, la première partie de ce travail aborde la mise en oeuvre et l’évaluation d’un modèle Lagrangien de transport des sédiments dans le cadre de cette méthode où les sédiments sont transportés par une équation de mouvement. L’effet du bruit inhérent à la méthode SPH sur le mouvement des sédiments est évalué par rapport à l’effet de la dispersion turbulente des sédiments, qui a été introduite par un modèle basé sur l’équation de Langevin. En outre, les termes liés aux différentes forces dans l’équation du mouvement sont étudiés dans le cadre de la méthode SPH. Une deuxième partie de ce travail développe une approche efficace et généralement applicable pour obtenir l’endommagement globale sans adopter des modèles d’érosion. Pour obtenir cet endommagement global en macroéchelle, l’endommagement causé par un seul impact de sédiment, qui est calculé par des simulations de structure en microéchelle, est combiné avec les statistiques d’impact des simulations du fluide. / Hydraulic energy represents one important contribution to the growing source of renewable energies where the kinetic energy of water is transformed into electric energy. The water flowing through the hydraulic turbines always contains a solid part, for example sand and clay. Those sediments can reach high concentrations, harming importantly the turbine structure by a mechanism called hydro-abrasive erosion. Turbine types implying very high flow velocities, like Pelton turbines, are in particular sensitive to hydro-abrasive erosion. Numerical simulations present an efficient way to study the topic of hydro-abrasive erosion in Pelton turbines as they allow the variation of numerous parameters. Thus an immediate response to operational, design or optimization questions can be obtained. However it has been shown that the application of general, widely used erosion models do not deliver physical correct results due to the particular material and flow properties of Pelton turbines. Consequently this work investigates the potential of erosion modeling based on first principals. That means the sediment movement in the fluid is simulated, their state at impact tracked and then the overall macroscopic material damage calculated based on microscale structural simulations. A convenient formulation for fluid simulations in Pelton turbines is the rather novel, meshless method Smoothed Particle Hydrodynamics (SPH). Therefore the first part of this work addresses the implementation and evaluation of a Lagrangian sediment transport model in the framework of this method where sediments are transported by a particle equation of motion. The effect of the SPH method inherent noise on the sediment movement is evaluated against the effect of the turbulent dispersion of the sediments, which has been introduced via an ad-hoc model based on the Langevin equation. Furthermore the different force terms in the particle equation of motion are investigated with respect to the SPH method. A second part develops an efficient and general applicable approach to obtain the overall erosion damage without adopting erosion models. Therefore the damage caused by a single sediment impact is calculated by structural simulations on the microscale in a first step. In a second step that isolated damage is combined with impact statistics from the fluid simulations and hence gives the overall damage profile on the macroscale.
|
24 |
Simulation de l'écoulement turbulent dans les aspirateurs de turbines hydrauliques : impact des paramètres de modélisation /Payette, Félix-Antoine. January 2008 (has links)
Thèse (M.Sc.)--Université Laval, 2008. / Bibliogr.: f. [147]-149. Publié aussi en version électronique dans la Collection Mémoires et thèses électroniques.
|
25 |
Modélisation et contrôle des turbines hydrauliques pour l'intégration des sources d'énergies renouvelabless / Modeling and Control of Hydraulic Turbines for the Integration of Renewable Sources of EnergyMohamed, Amgad 26 April 2019 (has links)
Récemment, les sources d’énergie renouvelables telles que l’énergie éolienne et solaire, sont devenues des éléments essentiels des réseaux électriques en tant qu’alternatives d’énergie propre aux combustibles fossiles. Cependant, la qualité de la production de telles ressources énergétiques dépend de différents facteurs incertains, tels que les conditions météorologiques. Par conséquent, la gestion intermittente des sources d’énergie renouvelables est l’un des principaux défis à relever pour une utilisation à plus grande échelle.Une solution possible pour réduire les effets de l'intermittence des ressources énergétiques sur la production d'énergie et la stabilité du réseau consiste à utiliser les technologies de stockage d'énergie. Les stations de transfert d’énergie par pompage (STEP) semblent être la méthode de stockage propre unique qui peut être utilisée pour lutter contre la nature intermittente de l’énergie éolienne et solaire. Les STEP utilisent des pompes-turbines réversibles pouvant fonctionner comme des pompes pour stocker l'excès d'énergie électrique dans le réseau et comme des turbines pour générer de l'énergie électrique, lorsque davantage d'énergie électrique est nécessaire. Ainsi, les STEP aident à stabiliser le réseau en présence de ressources en énergies renouvelables intermittentes.Ce travail met l’accent sur les conditions de fonctionnement de la turbine pour le démarrage des STEP. Dans les STEP, la condition de fonctionnement de démarrage est généralement visitée plusieurs fois, à la suite d'un basculement entre les modes de pompage et de turbine. Ainsi, l'amélioration des performances des régulateurs de vitesse utilisés pour le démarrage devient plus importante lorsque l'on traite avec des STEP afin de permettre une récupération rapide de la tension.Cette thèse s'inscrit dans le cadre du projet pluridisciplinaire INNOVHYDRO, qui regroupe différents laboratoires et entreprises tels que, GIPSA-lab où cette thèse a été préparée, G2Elab, GE et EDF.Dans cette thèse, une architecture de contrôleur prenant en compte les limitations informatiques des microcontrôleurs existants utilisés chez GE est proposée. Elle apporte une solution au problème du démarrage rapide de la turbine tout en évitant l'excitation de fortes oscillations de pression. De plus, les contraintes de couple s'intègrent facilement pour permettre un démarrage en douceur, ce qui réduit la fatigue des composants mécaniques, résultant du démarrage répétitif des turbines.Des solutions sont proposées pour ajuster les gains du contrôleur, tout en tenant compte de la dynamique non linéaire de l'actionneur utilisé chez GE. Pour commencer, une méthodologie de réglage est décrite pour garantir la stabilité asymptotique et les performances en boucle fermée, tout en minimisant la limite supérieure de l'erreur de suivi en sortie. De plus, une approche d'optimisation systématique est développée pour sélectionner les gains du contrôleur afin de minimiser le temps nécessaire pour obtenir une connexion stable au réseau, tout en respectant les contraintes de couple maximales. De plus, des algorithmes sont utilisés pour choisir les paramètres du contrôleur de sorte que des certificats de robustesse soient obtenus sur le contrôleur résultant.De plus, un simulateur a été développé pour les centrales hydrauliques et utilisé pour tester le contrôleur proposé. Le simulateur est constitué d’un système d’équations différentielles continues qui modélisent systématiquement le comportement des différents composants de la centrale hydraulique, tels que les conduites forcées, les tunnels, les réservoirs et les cheminées d’équilibre. De plus, le comportement non linéaire et les caractéristiques en S des régions instables des turbines hydrauliques, généralement modélisées par des diagrammes de Hill, sont pris en compte avec succès. De plus, la dynamique non linéaire de l'actionneur est incluse dans le modèle mathématique complet. / Recently, renewable energy resources such as, wind and solar energy, have become integral parts of electric grids as clean energy alternatives to fossil fuels. However, the quality of production of such resources of energy depends on different uncertain factors, for instance, weather conditions. Therefore, dealing with the intermittent nature of renewable energy resources is one of the main challenges when using them on a larger scale.A possible solution to reduce the effects of energy resources intermittency on energy production and grid's stability, is to use energy storage technologies. Pumped storage power plants (PSPs) seem to be the unique clean storage method that can be used to counteract the intermittent nature of wind and solar energy. PSPs make use of pumps-turbines which are capable of working as pumps to store excess electric energy in the grid, and as turbines to generate electric energy, when more electric energy is needed. Thus, PSPs help in stabilizing the grid in the presence of intermittent renewable energy resources.The emphasis in this work is on turbine start-up operating mode for PSPs. In PSPs, the start-up operating mode is usually visited multiple times, as a result of switching back and forth between pumping and turbine modes. Thus, enhancing the performance of the speed governors used for starting-up becomes more important when dealing with PSPs to enable a rapid voltage recovery.This PhD thesis is part of the multidisciplinary INNOVHYDRO project that includes different laboratories and enterprises such as, GIPSA-lab where this thesis was prepared, G2Elab, GE and EDF.In this thesis, a controller architecture that takes into account the computational limitations of existing microcontrollers in use at GE, is proposed. It provides a solution to the problem of fast turbine start-up, while avoiding the excitation of sharp pressure oscillations. In addition, torque constraints are easily integrated to achieve smoother start-up, which reduces the fatigue of the mechanical components, resulting from repetitive start-up of turbines.Different approaches are proposed to tune the controller gains, while taking into account the nonlinear dynamics of the actuator used at GE. To begin with, a tuning methodology is outlined to guarantee the asymptotic stability and the closed-loop performance, while minimizing the guaranteed upper bound on the output tracking error. In addition, a systematic optimization approach is developed to select the controller gains to minimize time needed to get a stable start-up, while respecting maximum torque constraints. Moreover, randomized algorithms are used to choose the controller parameters such that robustness certificates are obtained on the resulting controller.Furthermore, a simulator has been developed for hydraulic power plants and used to test the proposed controller. The simulator constitutes of a system of continuous differential equations, which systematically model the behavior of the different components of the hydraulic power plant such as, penstocks, tunnels, reservoirs and surge tanks. In addition, the nonlinear behavior and unstable regions 'S-characteristics' of hydraulic turbines, usually modeled by Hill charts, are successfully taken into consideration. Moreover, the actuator's nonlinear dynamics are included in the overall mathematical model.
|
26 |
Detached eddy simulation of unsteady turbulent flows in the draft tube of a bulb turbineTaheri, Arash 24 April 2018 (has links)
Les aspirateurs de turbines hydrauliques jouent un rôle crucial dans l’extraction de l’énergie disponible. Dans ce projet, les écoulements dans l’aspirateur d’une turbine de basse chute ont été simulés à l'aide de différents modèles de turbulence dont le modèle DDES, un hybride LES/RANS, qui permet de résoudre une partie du spectre turbulent. Déterminer des conditions aux limites pour ce modèle à l’entrée de l’aspirateur est un défi. Des profils d’entrée 1D axisymétriques et 2D instationnaires tenant compte des sillages et vortex induits par les aubes de la roue ont notamment été testés. Une fluctuation artificielle a également été imposée, afin d’imiter la turbulence qui existe juste après la roue. Les simulations ont été effectuées pour deux configurations d’aspirateur du projet BulbT. Pour la deuxième, plusieurs comparaisons avec des données expérimentales ont été faites pour deux conditions d'opération, à charge partielle et dans la zone de baisse rapide du rendement après le point de meilleur rendement. Cela a permis d’évaluer l'efficacité et les lacunes de la modélisation turbulente et des conditions limites à travers leurs effets sur les quantités globales et locales. Les résultats ont montrés que les structures tourbillonnaires et sillages sortant de la roue sont adéquatement résolus par les simulations DDES de l’aspirateur, en appliquant les profils instationnaires bidimensionnels et un schéma de faible dissipation pour le terme convectif. En outre, les effets de la turbulence artificielle à l'entrée de l’aspirateur ont été explorés à l'aide de l’estimation de l’intermittence du décollement, de corrélations en deux points, du spectre d'énergie et du concept de structures cohérentes lagrangiennes. Ces analyses ont montré que les détails de la dynamique de l'écoulement et de la séparation sont modifiés, ainsi que les patrons des lignes de transport à divers endroits de l’aspirateur. Cependant, les quantités globales comme le coefficient de récupération de l’aspirateur ne sont pas influencées par ces spécificités locales. / Draft tubes play a crucial role in elevating the available energy extraction of hydroturbines. In this project, turbulent flows in the draft tube of a low-head bulb turbine were simulated using, among others, an advance hybrid LES/RANS turbulent model, called DDES, which can resolve portions of the turbulent spectrum. Providing appropriate inflow boundary conditions for such models is a challenging issue. In this regard, different inflow boundary conditions were tested, including axisymmetric 1D profiles, and unsteady 2D inflow profiles that take runner blade wakes and vortices into account. Artificial fluctuation at the inlet section of the draft tube was also included to mimic the turbulence existing after the runner. Simulations were conducted for two draft tube configurations of the BulbT project. For one of them, intensive comparisons with experimental data were done for two operating conditions, one at part load and another in the sharp drop-off portion of the efficiency hill after the best efficiency point. This allowed to assess the effectiveness and shortcomings of the adopted turbulence modeling and boundary conditions through their effects on the global and local quantities. The results showed that the runner-related vortical structures and wakes are appropriately resolved using stand-alone DDES simulation of the draft tube flows. This is achieved by applying unsteady 2D inflow profiles along with adopting low dissipation scheme for the convective term. Furthermore, the effects of applying artificial turbulence at inlet were explored using separation intermittency, two-point correlation, energy spectrum and Lagrangian coherent structure concepts. These analyses revealed that the type of inflow boundary conditions modifies the details of the flow and separation dynamics as well as patterns of the transport barriers in different regions of the draft tube. However, the global quantities such as recovery coefficient are not influenced by these local features.
|
27 |
Étude numérique des phénomènes transitoires dans une turbine axiale de type hélice durant l'emballementFortin, Mélissa 24 April 2018 (has links)
Ce mémoire présente l’étude numérique d’un emballement de turbine hydraulique axiale à échelle modèle. Cet état transitoire est simulé du point de meilleur rendement jusqu’à l’atteinte de 95% de la vitesse d’emballement. Pour ce faire, une méthodologie numérique est développée à l’aide du logiciel commercial ANSYS CFX en utilisant une approche "Unsteady Reynolds Averaged Navier-Stokes" avec modèle de turbulence k-ε. Cette méthodologie numérique a été validée grâce à des mesures expérimentales de pression acquises en situation d’emballement sur les aubes d’une roue de turbine axiale étudiée au Laboratoire de Machines Hydrauliques de l’Université Laval. La validation des simulations numériques a été réalisée grâce à des comparaisons dans les domaines temporel et fréquentiel entre les pressions mesurées expérimentalement et calculées numériquement. Les analyses fréquentielles en transitoire ont été effectuées à l’aide de transformées en ondelettes afin de représenter l’évolution temporelle du spectre de fréquence. Des analyses qualitatives de phénomènes hydrauliques prenant place dans la turbine sont aussi présentées. Les analyses effectuées ont permis de confirmer le développement d’un tourbillon en précession par rapport à la roue dans l’aspirateur provocant les fluctuations de pression dominantes à des fréquences subsynchrones. La comparaison entre les données expérimentales et numériques a permis de valider une stratégie de simulation transitoire et d’en définir les limites en vue de prochaines simulations d’emballement. Des tests supplémentaires sont suggérés pour améliorer la précision ou le niveau de confiance de la méthode. / This work presents a numerical study of a runaway event (from the load rejection at BEP to 95% of the runaway speed) for a model propeller turbine. To do so, a numerical methodology, based on the “Unsteady Reynolds Averaged Navier-Stokes” approach with k-ε turbulence model, is developed with the commercial CFD solver ANSYS CFX. This methodology is validated with pressure measurements on the runner blades of a propeller model turbine during a runaway event at the Hydraulic Machines Laboratory of Laval University. Comparisons between experimental pressure measurements and numerical pressure simulations in time domain and frequency domain are mainly used to validate the numerical methodology. The transient frequency analysis are performed with Wavelet to represent the time evolution of the frequency spectrum. Qualitative analysis of the hydraulic phenomena developed during the transient event are also carried out. Numerical analysis showed the development and the evolution of a vortex rope in the draft tube associated with high pressure fluctuations. Comparisons between experimental and numerical data revealed the limits of the methodology that will need adjustments for future works.
|
28 |
Analyse expérimentale en entrée et en sortie de l'aspirateur d'une turbine hydraulique de basse chuteGouin, Philippe 17 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2010-2011 / L'objectif du présent mémoire est de contribuer à la caractérisation de l'écoulement dans l'aspirateur d'une turbine hydraulique de type hélice. Pour y arriver, un anémomètre laser à effet Doppler (LDV) est utilisé dans plusieurs sections de l'aspirateur d'un modèle de cette turbine, maintenu sous plusieurs conditions d'opération, pour créer une base de données de vitesse. La composante radiale en sortie de roue est particulièrement recherchée puisque son acquisition constitue un défi technique au niveau expérimental et que son importance dans l'évolution de l'écoulement est établie. Les résultats principaux font ressortir que la vitesse radiale arbore une grandeur non négligeable en sortie de roue et varie de façon importante suivant les conditions d'opération. L'asymétrie circonférentielle des trois composantes de vitesse est également confirmée dans cette section. L'évolution de l'écoulement dans le coude de l'aspirateur engendre un débalancement du débit sortant à travers les deux pertuis. Finalement, l'écoulement dans l'aspirateur de ce type de turbine est fortement instationnaire, ce qui rend essentielle l'étude des fluctuations qui s'y développent.
|
29 |
Investigation expérimentale du décollement dans l'aspirateur d'une turbine bulbeDuquesne, Pierre 24 April 2018 (has links)
La présente thèse propose une étude expérimentale du décollement dans le diffuseur d’un modèle de turbine hydroélectrique bulbe. Le décollement se produit quand la turbine est opérée à forte charge et il réduit la section effective de récupération du diffuseur. La diminution de la performance du diffuseur à forte charge engendre une baisse brusque de l’efficacité de la turbine et de la puissance extraite. Le modèle réduit de bulbe est fidèle aux machines modernes avec un diffuseur particulièrement divergent. Les performances de la turbine sont mesurées sur une large gamme de points d’opération pour déterminer les conditions les plus intéressantes pour l’étude du décollement et pour étudier la distribution paramétrique de ce phénomène. La pression est mesurée le long de l’aspirateur par des capteurs dynamiques affleurants alors que les champs de vitesse dans la zone de décollement sont mesurés avec une méthode PIV à deux composantes. Les observations à la paroi sont pour leur part faites à l’aide de brins de laine. Pour un débit suffisant, le gradient de pression adverse induit par la géométrie du diffuseur affaiblit suffisamment la couche limite, entraînant ainsi l’éjection de fluide de la paroi le long d’une large enveloppe tridimensionelle. Le décollement instationnaire tridimensionnel se situe dans la même zone du diffuseur indépendamment du point d’opération. L’augmentation du débit provoque à la fois une extension de la zone de décollement et une augmentation de l’occurrence de ses manifestations. La position et la forme du front de décollement fluctue significativement sans périodicité. L’analyse topologique et celle des tourbillons des champs de vitesse instantanés montrent une topologie du front de décollement complexe qui diffère beaucoup d’une réalisation à l’autre. Bien que l’écoulement soit turbulent, les tourbillons associés aux foyers du front sont clairement plus gros et plus intenses que ceux de la turbulence. Cela suggère que le mécanisme d’enroulement menant aux tourbillons du décollement est clairement distinct des mécanismes de la turbulence. / This thesis presents an experimental investigation of flow separation inside the diffuser of a small scale model of a bulb turbine. The flow separation occurs when the turbine is operated at high discharge and it reduces the diffuser effective area. In the case of bulb turbines, the kinetic energy recovered by the diffuser represents an important part of the total net head available for the runner energy extraction. The decrease of the diffuser efficiency leads to a sudden drop in the turbine efficiency and in the power extraction. The small scale model is faithful to modern turbines with a particularly divergent diffuser. The turbine performances are measured in a large range of operating conditions in order to select the most interesting ones and to investigate the parametric range of the phenomena. The pressure is measured along the diffuser by flush mounted dynamic sensors while the velocity fields inside the separation zone are obtained by a two-component PIV method. Separation observations on the wall are done using tufts. For a sufficient flow rate, the adverse pressure gradient induced by the diffuser geometry sufficiently weakens the boundary layer, thus leading to fluid ejection from the wall along a large three-dimensional envelope. The three-dimensional unsteady flow separation zone is located in the same area independently of the operating points. The flow rate increase leads to a wider separation zone occurring more frequently. The separation front fluctuates significantly both in location and in shape with no periodicity. Topological and vortex analyses on instantaneous velocity fields show a complex separation front topology which differs greatly from one realisation to another. Despite the highly turbulent flow, the separation front vortices are definitely bigger and more intense than turbulent vortices. It suggests that the roll-up mechanisms leading to separation surface vortices appear to be distinct from those of turbulent vortices.
|
30 |
Étude expérimentale par la technique PIV de l'écoulement dans le canal inter-aube d'une turbine axiale de type héliceBeaulieu, Sébastien 17 April 2018 (has links)
Dans ce mémoire est présentée l'étude expérimentale de l'écoulement dans une roue de turbine axiale de type hélice. Les performances de ces machines étant grandement influencées par le comportement de l'écoulement dans cette partie de la turbine, il est donc important de bien connaître les phénomènes hydrauliques qui y sont présents. Au cours de ce projet, afin de réaliser une campagne de mesures un système PIV stéréoscopique a été utilisé. La configuration du montage expérimental, la technique d'acquisition utilisée ainsi que les méthodes de traitement de données employées ont permis d'analyser l'écoulement moyen dans une section couvrant environs 20% de l'envergure d'un canal délimité par deux aubes consécutives de la roue. Les résultats ont permis d'analyser la relation entre les différentes composantes de la vitesse de l'écoulement, et ce, pour plusieurs points d'opération. De plus, deux écoulements secondaires qui ont été répertoriés dans la littérature ont été identifiés à l'intérieur de la zone de mesure. Le premier de ceux-ci est le tourbillon de coin de bord d'attaque qui est le plus intense des deux, et le second est le tourbillon relatif. Une comparaison entre les mesures expérimentales ainsi que des résultats issus de simulations numériques a aussi été réalisé, exhibant une bonne concordance entre les deux jeux de données, principalement au point de fonctionnement nominal.
|
Page generated in 0.0892 seconds