Spelling suggestions: "subject:"turbochargers"" "subject:"turbocompressor""
1 |
Architectures multiprocesseurs monopuces génériques pour turbo-communications haut-débitMuller, Olivier 13 December 2007 (has links) (PDF)
Les applications dans le domaine des communications numériques deviennent de plus en plus complexes et diversifiées. En témoigne l'apparition des turbo-communications qui représentent la généralisation du principe de processus itératif introduit par les turbocodes. La mise en œuvre de systèmes de turbo-communications, communément appelés turbo- récepteurs, est devenue primordiale pour atteindre les performances aujourd'hui exigées en terme de qualité de transmission. Des architectures matérielles dédiées implantant ces systèmes ont déjà vu le jour dans plusieurs équipes de recherches académiques et industrielles. Cependant, pour des exigences de flexibilité de l'implantation (pour supporter les évolutions d'une norme ou des applications multi-standards), de qualité de transmission et de haut débit de communication, des architectures multiprocesseurs adéquates deviennent incontournables. Le sujet de cette thèse porte sur la mise en œuvre d'une plate-forme architecturale multiprocesseur générique adaptée aux turbo-récepteurs et plus particulièrement aux turbo-décodeurs convolutifs. Ainsi, le sujet gravite autour de deux axes de recherche : un axe algorithmique autour des systèmes de turbo-décodage et un autre autour de la conception numérique ces derniers. Sur l'axe algorithmique, ces travaux présentent une étude approfondie des algorithmes de turbo-décodage autour des techniques de parallélisme. Les fondations de cette étude reposent sur une classification des parallélismes existants qui distingue les parallélismes selon leurs granularités et leurs pouvoirs d'accélération. L'analyse de cette classification a révélé la nécessité d'investiguer les parallélismes de sous-bloc et de décodeur composant pour améliorer l'efficacité de leur mise en œuvre. Les recherches menées mettent en évidence que le parallélisme de sous-bloc s'avère plus efficace avec la technique d'initialisation par passage de message. Nous avons également montré que le parallélisme de décodeur composant, grâce à la technique du décodage combiné ou « shuffled decoding » , améliore l'efficacité des architectures de turbo-décodeur fortement parallèles et que cette dernière peut être optimisée en contraignant la conception de l'entrelaceur du turbocode. Sur l'axe architectural, ces avancées algorithmiques ont été mises à profit dans une plate-forme multiprocesseur qui exploite au mieux les compromis matériel/logiciel (i .e. performance/flexibilité) tant au niveau du calcul qu'au niveau des communications. Au niveau du calcul, un processeur ASIP (Application-Specific Instruction-set Processor) dédié au décodage des codes convolutifs a été proposé et conçu de manière à ne fournir que la flexibilité désirée, tout en conservant des performances élevées grâce à un chemin de données fortement parallélisé. Au niveau des communications, la plate-forme a été dotée de réseaux sur puce dédiés pour assurer la bande passante nécessaire aux échanges itératifs d'information. Cette plate-forme multi-ASIP flexible a été prototypée sur une carte d'émulation intégrant des circuits FPGA. La flexibilité de la plate-forme proposée autorise le support de tous les standards de turbocodes convolutifs actuels et émergeants et peut trouver un intérêt industriel dans les domaines des télécommunications mobiles et satellitaires, de la diffusion de contenu ou de l'Internet haut-débit.
|
2 |
Towards higher speed decoding of convolutional turbocodesSANCHEZ GONZALEZ, Oscar David 15 March 2013 (has links) (PDF)
The turbo codes are a well known channel coding technique widely used because of their outstanding error decoding performance close to the Shannon limit. These codes were proposed using a clever pragmatic approach where a set of concepts that had been previously introduced, together with the iterative processing of data, are successfully combined to obtain close to optimal decoding performance capabilities. However, precisely because this iterative processing, high latency values appear and the achievable decoder throughput is limited. At the beginning of our research activities, the fastest turbo decoder architecture introduced in the literature achieved a throughput peak value around 700 Mbit/s. There were also several works that proposed architectures capable of achieving throughput values around 100 Mbit/s. Research opportunities were then available in order to establish architectural solutions that enable the decoding at a few Gbit/s, so that the industrial requirements are fulfilled and future high performance digital communication systems can be conceived. The first part of this work is devoted to the study of the turbo codes at an algorithmic level. Several SISO decoder algorithms are explored, and different parallel turbo decoder techniques are analyzed. The convergence of parallel turbo decoder is specially considered. To this end the EXtrinsic Information Transfer (EXIT) charts are used. Conclusions derived from these kind of diagrams have served to propose a novel SISO decoder schedule to be used in shuffled turbo decoder architectures. The architectural issues when implementing high parallel turbo decoder are considered in the second part of this thesis. We propose a high throughput low complexity radix-16 SISO decoder. This decoder is intended to break the bottleneck that appears because of the recursive operations in the heart of the turbo decoding algorithm. The design of this architecture was possible thanks to the elimination of parallel paths in a radix-16 trellis diagram transition. The proposed SISO decoder implements a high speed radix-8 Add Compare Select (ACS) unit which exhibits a lower hardware complexity and lower critical path compared with a radix-16 ACS unit. Our radix-16 SISO decoder degrades the turbo decoder error correcting performance. Therefore, we have proposed two techniques so that the architecture can be used in practical applications. Thus, architectural solutions to build high parallel turbo decoder architectures, which integrate our SISO decoder, are presented. Finally, a methodology to efficiently explore the design space of parallel turbo decoder architectures is described. The main objective of this approach is to reduce the time to market constraint by designing turbo decoder architectures for a given throughput.
|
3 |
Vers une architecture optimisée d'ASIP pour turbo décodage multi-standardAL KHAYAT, Rachid 16 November 2012 (has links) (PDF)
Les systèmes sur puces dans le domaine des communications numériques deviennent extrêmement diversifiés et complexes avec la constante émergence de nouveaux standards et de nouvelles applications. Dans ce domaine, le turbo-décodeur est l'un des composants les plus exigeants en termes de calcul, de communication et de mémoire, donc de consommation d'énergie. Outre les exigences de performances croissantes, les nouveaux systèmes de communications numériques imposent une interopérabilité multi-standard qui introduit la nouvelle exigence de flexibilité de l'implémentation. Dans ce contexte, des travaux récents ont proposé l'utilisation du nouveau concept de processeurs à jeu d'instructions dédié à l'application (ASIP). Un tel modèle d'architecture permet au concepteur d'affiner librement le compromis flexibilité/performance tel que requis par l'application considérée. Toutefois, l'efficacité architecturale des processeurs dédiés à l'application est directement liée au jeu d'instruction défini ainsi qu'au taux d'utilisation des étages de pipeline. La plupart des travaux proposés récemment ne considèrent pas ces aspects explicitement. Par conséquent, ce travail de thèse s'inscrit dans l'objectif principal d'unifier l'approche orientée sur la flexibilité et celle orientée sur l'optimalité dans la conception de décodeurs de canal. Dans cet objectif, plusieurs contributions ont été proposées : (1) conception d'un turbo-décodeur multi-standard basé sur le concept ASIP assurant une efficacité architecturale élevée en bit/cycle/iteration/mm2, (2) optimisation de la vitesse de reconfiguration dynamique de l'ASIP proposé supportant tous les paramètres spécifiés dans les normes 3GPP-LTE/WiMAX/DVB-RCS, (3) conception d'entrelaceurs ARP et QPP de faible complexité pour le schéma de décodage de type papillon avec la technique de compression de treillis de type Radix4 et (4) proposition et mise en oeuvre d'un prototype FPGA de système de communication complet intégrant le turbo-décodeur multi-standard proposé. De plus, une première contribution a été proposée vers la conception d'une architecture multi-ASIP flexible et extensible supportant le décodage des turbocodes et des codes LDPC.
|
4 |
Vers des architectures multi-ASIP optimisées et flexibles pour le décodage des turbocodes et des codes LDPCMurugappa Velayuthan, Purushotham 17 December 2012 (has links) (PDF)
De nombreuses techniques de codage de canal sont spécifiées dans les nouvelles normes de communications numériques, chacune adaptée à des besoins applicatifs spécifiques (taille de trame, type de canal de transmission, rapport signal-à-bruit, bande-passante, etc.). Si l'on considère les applications naissantes multi-mode et multi-standard, ainsi que l'intérêt croissant pour la radio logicielle et la radio cognitive, la combinaison de plusieurs techniques de correction d'erreur devient incontournable. Néanmoins, des solutions optimales en termes de performance, de consommation d'énergie et de surface sont encore à inventer et ne doivent pas être négligées au profit de la flexibilité. Dans ce contexte, ce travail de thèse a exploré le modèle d'architecture multi-ASIP dans le but d¿unifier l'approche orientée sur la flexibilité et celle orientée sur l'optimalité dans la conception de décodeurs de canal flexibles. En considérant principalement les applications exigeantes de décodage itératif des turbocodes et des codes LDPC, des architectures multi-ASIP de décodeurs de canal sont proposées ciblant une grande flexibilité combinée à une haute efficacité architecturale en termes de bits/cycle/iteration/mm2. Différentes solutions architecturales et différentes approches de conception sont explorées pour proposer trois contributions originales. La première contribution concerne la conception d'un décodeur LDPC/Turbo multi-ASIP extensible, flexible et haut débit. Plusieurs objectifs de conception sont atteints en termes d'extensibilité, de partage de ressources, et de vitesse de configuration. Le décodeur proposé, nommé DecASIP, supporte le décodage des codes LDPC et turbocodes spécifiés dans les normes WiFi, WiMAX et LTE. L'extensibilité apportée par l'approche multi-ASIP basée sur des réseaux sur puces (NoC) permet d'atteindre les besoins en haut débit des normes actuelles et futures. La deuxième contribution concerne la conception d'un ASIP paramétré pour le turbo-décodage (TDecASIP). L'objectif étant d'étudier l'efficacité maximale atteignable pour un turbo décodeur basé sur le concept ASIP en maximisant l¿exploitation du parallélisme de sous-blocs. En outre, avec cette architecture nous avons démontré la possibilité de concevoir des c¿urs de traitement paramétrables et dédiés à l¿application en utilisant le flot de conception ASIP existant. La troisième contribution correspond à la conception d'un ASIP optimisé pour le décodage des codes LDPC (LDecASIP). Comme pour TDecASIP, l'objectif étant d'étudier l'efficacité maximale atteignable pour un décodeur de codes LDPC basé sur le concept ASIP en augmentant le degré de parallélisme et la bande passante des mémoires. Une quatrième contribution principale de cette thèse porte sur le prototypage matériel. Une plateforme de communication complète intégrant 4-DecASIP pour le décodage de canal a été prototypé sur une carte à base de circuits FPGA. À notre connaissance, c'est le premier prototype FPGA publié de décodeur de canal flexible supportant le décodage des turbocodes et des codes LDPC avec une architecture multi-ASIP intégrant des NoC. De plus, une intégration ASIC de ce décodeur a été réalisée par le CEA-LETI dans la puce MAG3D visant des applications de communications pour la 4G. Ces résultats démontrent le cycle de conception rapide et l'efficacité offerte par l'approche de conception basée sur le concept ASIP dans ce domaine d'application, permettant ainsi d¿affiner les compromis de conception par rapport aux divers objectifs ciblés.
|
5 |
Etude de turbocodes non binaires pour les futurs systèmes de communication et de diffusion / Study of non-binary turbo codes for future communication and broadcasting systemsKlaimi, Rami 03 July 2019 (has links)
Les systèmes de téléphonie mobile de 4ème et 5ème générations ont adopté comme techniques de codage de canal les turbocodes, les codes LDPC et les codes polaires binaires. Cependant, ces codes ne permettent pas de répondre aux exigences, en termes d’efficacité spectrale et de fiabilité, pour les réseaux de communications futurs (2030 et au-delà), qui devront supporter de nouvelles applications telles que les communications holographiques, les véhicules autonomes, l’internet tactile … Un premier pas a été fait il y a quelques années vers la définition de codes correcteurs d’erreurs plus puissants avec l’étude de codes LDPC non binaires, qui ont montré une meilleure performance que leurs équivalents binaires pour de petites tailles de code et/ou lorsqu'ils sont utilisés sur des canaux non binaires. En contrepartie, les codes LDPC non binaires présentent une complexité de décodage plus importante que leur équivalent binaire. Des études similaires ont commencé à émerger du côté des turbocodes. Tout comme pour leurs homologues LDPC, les turbocodes non binaires présentent d’excellentes performances pour de petites tailles de blocs. Du point de vue du décodage, les turbocodes non binaires sont confrontés au même problème d’augmentation de la complexité de traitement que les codes LDPC non binaire. Dans cette thèse nous avons proposé une nouvelle structure de turbocodes non binaires en optimisant les différents blocs qui la constituent. Nous avons réduit la complexité de ces codes grâce à la définition d’un algorithme de décodage simplifié. Les codes obtenus ont montré des performances intéressantes en comparaison avec les codes correcteur d’erreur de la littérature. / Nowadays communication standards have adopted different binary forward error correction codes. Turbo codes were adopted for the long term evolution standard, while binary LDPC codes were standardized for the fifth generation of mobile communication (5G) along side with the polar codes. Meanwhile, the focus of the communication community is shifted towards the requirement of beyond 5G standards. Networks for the year 2030 and beyond are expected to support novel forward-looking scenarios, such as holographic communications, autonomous vehicles, massive machine-type communications, tactile Internet… To respond to the expected requirements of new communication systems, non-binary LDPC codes were defined, and they are shown to achieve better error correcting performance than the binary LDPC codes. This performance gain was followed by a high decoding complexity, depending on the field order.Similar studies emerged in the context of turbo codes, where the non-binary turbo codes were defined, and have shown promising error correcting performance, while imposing high complexity. The aim of this thesis is to propose a new low-complex structure of non-binary turbocodes. The constituent blocks of this structure were optimized in this work, and a new low complexity decoding algorithm was proposed targeting a future hardware implementation. The obtained results are promising, where the proposed codes are shown to outperform existing binary and non-binary codes from the literature.
|
6 |
Etude et implémentation d'une architecture de décodage générique et flexible pour codes correcteurs d'erreurs avancésDION, Jean 05 November 2013 (has links) (PDF)
Le codage de canal est une opération mathématique qui améliore la qualité des transmissions numériques en corrigeant les bits erronés en réception. Les contraintes des usages comme la qualité de réception, les débits d'utilisation, la latence de calcul, la surface ou encore la consommation électrique favorisent l'usage de différents codes dans la standardisation des protocoles de communication. La tendance industrielle est à la convergence des réseaux de communication pour des usages variés. Ce large choix de codage devient un handicap pour la conception de transmetteurs à bas coûts. Les réseaux médias favorisent des codes correcteurs d'erreurs avancés comme les turbocodes et les codes LDPC pour répondre aux contraintes de qualité de réception. Or ces procédés ont un coût de décodage important sur les récepteurs finaux. Une architecture adaptée à plusieurs types de codes capable d'évoluer en fonction d'une modification du protocole d'accès devient inévitable pour élaborer de nouveaux scénarios d'usages. Ce mémoire présente le principe du codage de canal et la plupart des codes correcteurs d'erreurs avancés sélectionnés dans les standards de communication courants. Les caractéristiques communes des codes QC-LDPC et des turbocodes sont soulignées. Les principaux algorithmes ainsi que certaines architectures de décodage sont présentés. La complexité matérielle des principaux algorithmes de décodage est évaluée. Ils sont comparés pour un même code et à un niveau de correction équivalent pour les codes QC-LDPC. Une étude similaire est réalisée sur les turbocodes. Les algorithmes de décodage sont appliqués sur des codes de tailles et de rendements proches et dimensionnés pour atteindre une correction similaire afin de sélectionner un algorithme de décodage conjoint aux deux familles de code. Les codes QC-LDPC et les turbocodes se structurent à l'aide d'une représentation en treillis commune. La technique de fenêtrage couramment appliquée au décodage des turbocodes est étudiée pour le décodage d'un code QC-LDPC. Enfin, l'entrelacement des codes QC-LDPC est mis en évidence et reconsidéré en fonction des contraintes matérielles. Un coeur de décodage de treillis compatible avec les standards 3GPP LTE et IEEE 802.11n est proposé. Plusieurs structures de décodage sont ensuite introduites incorporant un ou plusieurs de ces coeurs. L'intégration sur cible FPGA est détaillée. Un scénario d'utilisation avec un contexte de décodage évoluant à chaque message reçu est proposé ce qui souligne l'impact de la reconfiguration sur les débits de décodage. La structure multistandard nécessite 4,2 % (respectivement 5,3 %) de ressources matérielles supplémentaires à une structure compatible avec le standard 3GPP LTE (resp. IEEE 802.11n) seul. La dégradation du débit maximal due à la reconfiguration entre le décodage des mots de code est d'au plus 1 %. Une architecture à plusieurs coeurs est également portée sur une cible ASIC de 65 nm. Cette architecture fonctionne à une fréquence de 500 Mhz sur une surface de 2,1 mm2 décodant les mots de code 3GPP LTE et IEEE 802.11n, et acceptant une reconfiguration dynamique entre deux mots de code consécutifs.
|
Page generated in 0.0583 seconds