• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 62
  • 62
  • 20
  • 17
  • 16
  • 12
  • 12
  • 12
  • 11
  • 11
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

A study of nozzle exit boundary layers in high-speed jet flows

Trumper, Miles Thomas January 2006 (has links)
The requirement for reduced jet noise in order to meet stringent noise legislation (civil aviation), and low infra-red observability and the use of unconventional exhaust nozzle configurations to improve aircraft survivability and performance (military aviation) is driving research to develop a better understanding of jet development and mixing mechanisms. One option open to the engineer is the use of small-scale model testing to investigate jets flows and provide valuable data for the validation of numerical models. Although more economical than large/full scale testing, additional factors that influence jet development may be present which would not be present at full scale and whose influence needs to be fully understood in order to allow small scale–large scale read-across. One such factor is the nozzle exit boundary layer. Although considerable data exist on the influence of nozzle exit boundary layers on low speed jet flows, current information on high speed jet flows is limited. It was, therefore, the aim of this thesis to extend the current understanding of nozzle exit boundary layers and their influence on the jet development for high speed jet flows through a combination of experimental and computational techniques. A combination of pneumatic probe measurements and Laser Doppler Anemometry (LDA) was used to investigate nozzle inlet and exit boundary layers of simple conical nozzles and the influence of adding a parallel extension piece. The measurements showed that the rapid acceleration of the boundary layer within the nozzle significantly reduced its momentum thickness Reynolds number and changed the state of the boundary layer from turbulent to laminar-like. The addition of a parallel extension to the nozzle exit returned the boundary layer to a fully turbulent state. A low Reynolds number RANS CFD approach was used to investigate the flow within the nozzle. Simulations using the Launder-Sharma low Reynolds number k–ε model revealed that the magnitude of the acceleration within the conical nozzles resulted in the boundary layer beginning to relaminarise. Full relaminarisation was not achieved due to the short axial distance over which the acceleration was sustained. The addition of a parallel extension provided a relaxation region in which the boundary layer could recover from the acceleration to become fully turbulent. Measurements of the jet plume originating from nozzles with laminar-like and turbulent boundary layers showed little influence of the boundary layer shape and thickness on shear layer spreading and jet centreline development.
32

Modelling and simulation of single and multi-phase impinging jets

Garlick, Matthew Liam January 2015 (has links)
Impinging jets are a flow geometry that is of interest in many chemical and processing engineering applications for a wide range of industries. Of particular interest in the current research is their application to particle re-suspension in nuclear reprocessing activities such as the HAS (highly active storage) tanks at Sellafield, UK. The challenging nature of these operations and their environment means that in-situ experimental work is impossible. Therefore, when designing and optimising equipment such as HAS tanks, engineers often turn to computational modelling to help gain an understanding about what effects certain modifications may have on the performance of the jet. The challenge then becomes obtaining physically realistic predictions using the methods available to industry. Impinging jets are complex and complicated flow geometries that have caused a number of problems for computational modellers over the years. Indeed, several turbulence models and approaches have been developed specifically with impinging jets in mind to help overcome some of the more difficult aspects of the flow. The work presented herein compares Reynolds-averaged Navier-Stokes (RANS) commercial codes readily available to industrial users for single- and multi-phase flows with RANS and large eddy simulation (LES) codes developed in an academic research environment. The intention is to contrast and compare and highlight where industrial-based computational models fall short and how these might be improved through implementing schemes with fewer simplified terms. The work conducted for this Engineering Doctorate has modelled a series of impinging jets with varying jet heights and Reynolds numbers using a range of RANS turbulence models within commercial and academic-based codes. This allows not only the discussion of the performance of the applied turbulence models, but also the effects of varying jet height. The predictions are validated against available experimental data for assessment of the performance of the scheme used. The degree of alignment with real, physical data is an indication of the performance of a model and is used to conclude where a particular model has failed or whether it is more suited than another. Different particle sizes have also been considered to determine the ability of different particle tracking schemes to predict particle behaviour based on their response to the continuous phase. Multi-phase data is also validated against limited available experimental data. Finally, LES has been used to demonstrate the next step in complexity in terms of simulation and prediction of continuous phase flows in difficult engineering applications and how these can greatly improve upon predictions from RANS methods.
33

Computation of unsteady and non-equilibrium turbulent flows using Reynolds stress transport models

Al-Sharif, Sharaf January 2010 (has links)
In this work the predictive capability of a number of Reynolds stress transport(RST) models was first tested in a range of non-equilibrium homogeneous flows, comparisons being drawn with existing direct numerical simulation (DNS) results and physical measurements. The cases considered include both shear and normally strained flows, in some cases with a constant applied strain rate, and in others where this varied with time. Models were generally found to perform well in homogeneous shear at low shear rates, but their performance increasingly deteriorated at higher shear rates. This was attributed mainly to weaknesses in the pressure-strain rate models, leading to over-prediction of the shear stress component of the stress anisotropy tensor at high shear rates. Performance in irrotational homogeneous strains was generally good, and was more consistent over a much wider range of strain rates. In the experimental plane strain and axisymmetric contraction cases, with time-varying strain rates, there was evidence of an accelerated dissipation rate generation. Significant improvement was achieved through the use of an alternative dissipation rate generation term, Pε , in these cases, suggesting a possible route for future modelling investigation. Subsequently, the models were also tested in the inhomogeneous case of pulsating channel flow over a wide range of frequencies, the reference for these cases being the LES of Scotti and Piomelli (2001). A particularly challenging feature in this problem set was the partial laminarisation and re-transition that occurred cyclically at low and, to a lesser extent, intermediate frequencies. None of the models tested were able to reproduce correctly all of the observed flow features, and none returned consistently superior results in all the cases examined. Finally, models were tested in the case of a plane jet interacting with a rectangular dead-end enclosure. Two geometric configurations are examined, corresponding a steady regime, and an intrinsically unsteady regime in which periodic flow oscillations are experimentally observed (Mataoui et al., 2003). In the steady case generally similar flow patterns were returned by the models tested, with some differences arising in the degree of downward deflection of the impinging jet, which in turn affected the level of turbulence energy developing in the lower part of the cavity. In the unsteady case, only two of the models tested, a two-equation k-ε model and an advanced RST model, correctly returned purely periodic solutions. The other two RST models, based on linear pressure-strain rate terms, returned unsteady flow patterns that exhibited complex oscillations with significant cycle-to-cycle variations. Unfortunately, the limited availability of reliable experimental data did not allow a detailed quantitative examination of model performance.
34

Laminar kinetic energy modelling for improved laminar-turbulent transition prediction

Turner, Clare Ruth January 2012 (has links)
This thesis considers the advantages of incorporating laminar kinetic energy modelling into turbulence modelling, in order to predict laminar-turbulent transition. The final aim is to implement an improved transition model into the industrial Finite-Volume code, Code Saturne. The literature review suggests that in order for a RANS-based model to predict transition accurately, modelling of complex, anisotropic phenomena is necessary. The Walters-Cokljat model is shown to compare very well to other transition modelling methods, including correlation-based modelling. The Walters-Cokljat model is a single-point RANS-based model that solves an additional transport equation for laminar kinetic energy. This transition model is especially desirable from an industrial stand-point, due to its single-point RANS basis, with only 3 transport equations. Although this method shows great promise as an industrial tool for transition prediction, results presented here show that there are aspects of the model that require modification. The definition of effective length-scale and the method of accounting for the effects of shear sheltering are the two main areas for consideration. The current definition of effective length-scale is found to be inappropriate for flows with large free-stream length-scales, which are common-place in turbomachinery applications. Another phenomenon commonly found in turbomachinery is separation-induced transition; however, the current function for shear sheltering effects inhibits transition when turbulence intensity is not the forcing factor. Additionally, when reviewed analytically, the definition and placement of the shear sheltering function does not match the observations of Jacobs and Durbin. Alternatives for the definitions of the effective length-scale and the shear sheltering function are proposed. The individual proposals are tested, and steps towards a full working implementation are documented.
35

Improved fire modelling

Assad, Mahmoud Abdulatif January 2014 (has links)
This thesis describes the development and validation of a modified eddy viscosity model to take into account the misalignment between stress a_{ij} and strain S_{ij} fields for reacting flow. The stress-strain misalignment is quantified by introducing a C_{as}=-a_{ij}S_{ij} /\sqrt{2S_{ij}S_{ij}} parameter. A new transport equation for C_{as} was derived from a full Reynolds stress model (RSM). The C_{as} transport equation was coupled to a standard EVM model (e.g. k-\omega SST) to form three equations model. This model is a new version of the SST-C_{as} model introduced by Revell (Revell2006), to incorporate buoyancy and combustion effects for buoyant reacting flow (e.g. fire). The performance of the proposed model was initially investigated via non-reacting buoyant plumes with different level of unsteadiness. The buoyant plumes were also simulated using different turbulence models and the results were compared to proposed model and experimental data. The model shows significant improvements for velocity and scalar profiles in region closed to plume centreline compared to the original SST model. The SST-C_{as} model was then applied for a real fire test case (Steckler room), and the results were compared to experimental data and results of RSM models. The SST-C_{as} model generally yields better than classical EVM models and reduces the gap between the RSM and EVM prediction with 25-30\% additional computational expenses. This work is still under development and validation for reacting flows, further work is going on to include the turbulence combustion interaction and validate it with DNS data.
36

Numerical modelling of highly swirling flows in a cylindrical through-flow hydrocyclone

Ko, Jordan January 2005 (has links)
Three-dimensional turbulent flow in a cylindrical hydrocyclone is considered and studied by means of computational fluid dynamics using software packages CFX and Fluent. The aim has been to identify the methods that can be used for accurate simulation of the flow in three-dimensional configurations in hydrocyclones at high swirl numbers. As a starting point, swirling pipe flows created by tangential inlets, where detailed experimental data were available in literature, were considered. It was found that the velocity profiles for the flow with a swirl number of 2.67 could be predicted accurately using a Reynolds stress model and an accurate numerical discretization on a fine-enough mesh. At a higher swirl number, 7.84, under-prediction in the tangential velocity profiles was observed; however the prediction of the axial velocity profiles was satisfactory. The validated methods were then used to simulate the flow in a cylindrical hydrocyclone at a swirl number as large as 21. The calculated tangential velocity profiles were compared against experimental data measured with a pitometer. Acceptable agreements were recorded except near the geometric axis of the cyclone. Due to the lack of the aircore in the numerical model, disagreements near the axis of the cyclone could be expected to some extent. Numerical experiments performed in the present work indicated that the RNG k-ε model is not likely to be capable to predict highly swirling flows accurately and a Reynolds stress model is required. For three-dimensional models, where the computing capacity and the available memory set strong restrictions on the computational mesh, optimizing the maximum mesh resolution available play an important role on the accuracy and stability of the solution procedure. The most stable results in the present study were found using the Reynolds stress model proposed by Launder et al. on an as regular and structured mesh as possible using a higher order discretization scheme in Fluent. Therefore, the meshing capabilities of the pre-processor, the available turbulence models and the accuracy of the numerical methods must be considered in parallel. Acceptable results were also generated using the Baseline Reynolds stress model implemented in CFX, however, only with a transient procedure which was likely to be more time-consuming. Present simulations present a complex flow structure in the cylindrical cyclone with a double axial flow reversal. The effect of such a flow pattern on the fractionation of the fibres with small differences in density needs to be investigated in future studies. / QC 20101207
37

Verification and validation of the implementation of an Algebraic Reynolds-Stress Model for stratified boundary layers

Formichetti, Martina January 2022 (has links)
This thesis studies the implementation of an Explicit Algebraic Reynolds-Stress Model(EARSM) for Atmospheric Boundary Layer (ABL) in an open source ComputationalFluid Dynamics (CFD) software, OpenFOAM, following the guidance provided by thewind company ENERCON that aims to make use of this novel model to improvesites’ wind-field predictions. After carefully implementing the model in OpenFOAM,the EARSM implementation is verified and validated by testing it with a stratifiedCouette flow case. The former was done by feeding mean flow properties, takenfrom OpenFOAM, in a python tool containing the full EARSM system of equationsand constants, and comparing the resulting flux profiles with the ones extracted bythe OpenFOAM simulations. Subsequently, the latter was done by comparing theprofiles of the two universal functions used by Monin-Obukhov Similarity Theory(MOST) for mean velocity and temperature to the results obtained by Želi et al. intheir study of the EARSM applied to a single column ABL, in “Modelling of stably-stratified, convective and transitional atmospheric boundary layers using the explicitalgebraic Reynolds-stress model” (2021). The verification of the model showed minordifferences between the flux profiles from the python tool and OpenFOAM thus, themodel’s implementation was deemed verified, while the validation step showed nodifference in the unstable and neutral stratification cases, but a significant discrepancyfor stably stratified flow. Nonetheless, the reason behind the inconsistency is believedto be related to the choice of boundary conditions thus, the model’s implementationitself is considered validated. Finally, the comparison between the EARSM and the k − ε model showed thatthe former is able to capture the physics of the flow properties where the latter failsto. In particular, the diagonal momentum fluxes resulting from the EARSM reflectthe observed behaviour of being different from each other, becoming isotropic withaltitude in the case of unstable stratification, and having magnitude u′u′ > v′v′ > w′w′ for stably stratified flows. On the other hand, the eddy viscosity assumption used bythe k − ε model computes the diagonal momentum fluxes as being equal to each other.Moreover, the EARSM captures more than one non-zero heat flux component in theCouette flow case, which has been observed to be the case in literature, while the eddydiffusivity assumption used by the k − ε model only accounts for one non-zero heat fluxcomponent.
38

Kinematic Simulation for Turbulent Particle-Laden Flows

Murray, Stephen 17 June 2016 (has links)
Kinematic simulation (KS) is a means of generating a turbulent-like velocity field, in a manner that enforces an input Eulerian energy spectrum. Such models have also been applied in particle-laden flows, due to their ability to enforce spatial organization of the fluid velocity field when simulating the trajectories of individual particles. A critical evaluation of KS is presented; in particular, its ability to reproduce single-particle Lagrangian statistics is examined. Also the ability of KS to reproduce the preferential concentration of inertial particles is explored. Some numerical results are presented, in which fluid tracers and inertial particles are transported alternatively by (1) simulated turbulence generated by direct numerical simulation (DNS) of the incompressible Navier-Stokes equations, and (2) KS. The effect of unsteadiness formulation in particular is examined. It is found that even steady KS qualitatively reproduces the continuity effect, clustering of inertial particles, elevated dispersion of inertial particles and the intermittent turbulence velocity signal. A novel method is then motivated and formulated, in which, for input RANS parameters, a simulated spectrum is used to generate a KS field which enforces a target Lagrangian timescale. This method is then tested against an existing experimental benchmark, and good agreement is obtained. / Thesis / Doctor of Philosophy (PhD) / Turbulence arises in an immense variety of industrial and scientific applications; from weather to automotive design; from medicine to nuclear engineering. Because turbulence is chaotic, it is difficult to make accurate predictions of how a turbulent flow will behave in a given scenario. The objective of my research is to find easier ways of accurately modelling turbulence in a certain class of particle-laden flows.
39

Modélisation des écoulements turbulents en rotation et en présence de transferts thermiques par approche hybride RANS/LES zonale

De Laage De Meut, Benoît 11 May 2012 (has links) (PDF)
La simulation numérique d'écoulements turbulents dans les systèmes de refroi- dissement de joints de pompes hydrauliques demande à considérer des domaines de calcul très étendus et des temps d'intégration très longs. La modélisation hybride RANS/LES zo- nale pourrait permettre de reproduire, dans un temps de calcul acceptable industriellement, l'ensemble des phénomènes thermiques et dynamiques en présence. L'approche consiste à faire interagir une simulation des grandes échelles (LES), représentant finement les phé- nomènes instationnaires de la turbulence dans certaines régions critiques de l'écoulement, avec l'approche statistique (RANS), moins coûteuse numériquement et dont la mise en oeuvre dans le reste du domaine permet de rendre compte des variations globales imposées à l'écoulement (injection d'eau froide dans de l'eau chaude, rotation de l'arbre et de la roue, etc...). Dans cette optique, une étude détaillée des modélisations adaptées aux écoulements en rotation est réalisée, suivant les deux approches RANS et LES. De nombreux modèles de turbulence sont comparés sur un cas test de canal en rotation. Le couplage zonal aux faces de bord par la méthode des structures turbulentes synthétiques (SEM) est étudié et une méthode innovante de couplage volumique par force de rappel (Forçage Linéaire Ani- sotrope) sur une zone de recouvrement RANS/LES est proposée. Ces deux méthodes sont étendues pour la première fois à la thermique. Les simulations hybrides RANS/LES zonales présentées, sur des cas test de canal fixe, en rotation ou en convection forcée, montrent la faisabilité de telles modélisations pour des applications industrielles.
40

Experimental and computational studies of turbulent separating internal flows

Törnblom, Olle January 2006 (has links)
The separating turbulent flow in a plane asymmetric diffuser with 8.5 degrees opening angle is investigated experimentally and computationally. The considered flow case is suitable for fundamental studies of separation, separation control and turbulence modelling. The flow case has been studied in a specially designed wind-tunnel under well controlled conditions. The average velocity and fluctuation fields have been mapped out with stereoscopic particle image velocimetry (PIV). Knowledge of all velocity components allows the study of several quantities of interest in turbulence modelling such as the turbulence kinetic energy, the turbulence anisotropy tensor and the turbulence production rate tensor. Pressures are measured through the diffuser. The measured data will form a reference database which can be used for evaluation of turbulence models and other computational investigations. Time-resolved stereoscopic PIV is used in an investigation of turbulence structures in the flow and their temporal evolution. A comparative study is made where the measured turbulence data are used to evaluate an explicit algebraic Reynolds stress turbulence model (EARSM). A discussion regarding the underlying reasons for the discrepancies found between the experimental and the model results is made. A model for investigations of separation suppression by means of vortex generating devices is presented together with results from the model in the plane asymmetric diffuser geometry. A short article on the importance of negative production-rates of turbulent kinetic energy for the reverse flow region in separated flows is presented. A detailed description of the experimental setup and PIV measurement procedures is given in a technical report. / QC 20100923

Page generated in 0.1282 seconds