• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 38
  • 38
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Large Eddy Simulations Of Compressible Mixing Layers

Bodi, Kowsik V R 04 1900 (has links) (PDF)
No description available.
32

Versuchsanlage ROCOM zur Untersuchung der Kühlmittelvermischung in Druckwasserreaktoren - Ergebnisse quasistationärer Vermischungsexperimente

Grunwald, G., Kliem, S., Höhne, T., Rohde, U., Prasser, H.-M., Richter, K.-H., Weiß, F.-P. January 2002 (has links)
The test facility ROCOM (Rossendorf Coolant Mixing Model) has been built for the investigation of coolant mixing processes in the reactor pressure vessel of pressurised water reactors (PWR). ROCOM is a 1:5 model of the German PWR KONVOI and has been designed for a wide range of different mixing scenarios. ROCOM disposes of four loops with fully controllable coolant pumps. The test facility is operated with demineralised water. For the investigation of mixing, tracer solution (water labelled with salt) is injected into the facility. The transient distribution of the electrical conductivity is is measured at different positions of the flow path by means of wire-mesh sensor technique with high resolution in space and time. The measured conductivity is transformed into a dimensionless mixing scalar. The mixing at quasi-stationary conditions (constant loop mass flow rates) has been investigated in the presented experiments. That concerned nominal operation conditions, the operation with a reduced number of loops and the investigation of cold-water transients with running pumps and conditions of developed natural circulation. In special experimental series, the reproducibility of the results at identicla boundary conditions within the confidence intervalls has been shown. Further, the influence of various factors on the mixing has been investigated. This included the pressure losses at the core bottom plate, the global coolant flow level and the influence of the loop flow rate on the perturbed sector at the core inlet. An analysis of the measurement error of the used measurement technique completes the report.
33

Spatio-Temporal Analysis of Highly Dynamic Flows

Anup Saha (11869625) 01 December 2023 (has links)
<p dir="ltr">The increasing availability of spatio-temporal information in the form of detailed time-resolved images sampled at very high framing rates has resulted in a search for mathematical techniques capable of extracting and relaying the pertinent underlying physics governing complex flows. Analysis relying on the usage of a solitary spectral, correlation, or modal decomposition techniques to identify dynamically significant information from large datasets may give an incomplete description of these phenomena. Moreover, fully resolved spatio-temporal measurements of these complex flow fields are needed for a complete and accurate description across a wide spectrum of length and time scales. The primary goals of this dissertation are address these challenges in two key aspects: (1) to improve and demonstrate the novel application of complementary data analysis and modal decomposition techniques to quantify the dynamics of flow systems that exhibit intricate patterns and behaviors in both space and time, and (2) to make advancements in achieving and characterizing high-resolution and high-speed quantitative measurements of turbulent mixing fields.</p><p dir="ltr">In the first goal, two canonical flow fields are considered, including an acoustically excited co-axial jet and a bluff-body stabilized flame. The local susceptibility of a nonreacting, cryogenic, coaxial-jet, rocket injector to transverse acoustics is characterized by applying dynamical systems theory in conjunction with complementary wavelet-based spectral decomposition to high-speed backlit images of flow field. The local coupling of the jet with external acoustics is studied as a function of the relative momentum flux ratio between the outer and inner jets, giving a quantitative description of the dynamical response of each jet to external acoustics as a function of the downstream distance from the nozzle.</p><p dir="ltr">Bluff bodies are a common feature in the design of propulsion systems owing to their ability to act as flame holders. The reacting wake behind the bluff body consists of a recirculation bubble laden with hot-products and wrapped between separated shear layers. The wake region of a bluff body is systematically investigated utilizing a technique known as robust dynamic mode decomposition (DMD) to discern the onset of the thermoacoustic instability mode, which is highly detrimental to aerospace propulsion systems. The approach enables quantification of the spatial distribution and behavior of coherent structures observed from different flows as a function of the equivalence ratio.</p><p dir="ltr">As modal decomposition techniques employ a certain degree of averaging in time, a novel space-and-time local filtering technique utilizing the well-defined characteristics of wavelets is introduced with a goal of temporally resolving the spatial evolution of irregular flow instabilities associated with specific frequencies. This provides insight into the existence of transient sub-modal characteristics representing intermittencies within seemingly stable modes. The flow fields obtained from the same two canonical flows are interrogated to demonstrate the utility of the technique. It has been shown that temporally resolved flow features obtained from wavelet filtering satisfactorily track the same modal featured derived from DMD, but reveal sub-modal spatial distortions or local non-stationarity of specific modal frequencies on a frame-by-frame basis.</p><p dir="ltr">Finally, to improve the ability to study the dynamical behavior of complex flows across the full range of spatio-temporal scales present, advancements are reported in the spatial and temporal quantitative measurement of the scalar quantities in turbulent mixing fields utilizing 100 kHz planar laser-induced fluorescence (PLIF) and Rayleigh scattering imaging of acetone. The imaging system provided a resolution of 55 µm with a field-of-view mapping of 18.5 µm/pixel on the camera sensor, which is three times better spatial resolution than the previous reported work to-date for similar flow fields that were investigated at 1/10<sup>th</sup> the current measurement rate. The power spectra of instantaneous mixture fraction fluctuations adhere to Kolmogorov's well-established -5/3 law, showing that the technique captures a significant range of dissipation scales. This observation underscores the ability to study mixing dynamics throughout the turbulent by fully resolving scalar fluctuations up to 30 kHz. This enhanced spatio-temporal resolution allows for a more detailed investigation of the dynamical behavior of turbulent flows with complex modal interactions down to the smallest diffusion limited mixing scales.</p>
34

Influences des propriétés non-Newtoniennes sur un mélange de scalaire passif / Influences of non-Newtonian properties on a passive scalar mixture

Nguyen, Trong Dai 12 September 2013 (has links)
Cette thèse présente une étude expérimentale du problème de mélange dans les fluides complexes, étude menée en partenariat avec l’entreprise Sanofi Pasteur. Le mélange est un acte des plus fréquents dans la vie courante et aussi dans l’activité industrielle. On trouve dans la littérature de nombreuses études s’intéressant aux cuves de mélange pour en améliorer les performances à partir d’observations faites à grande échelle. Par contre, à notre connaissance, il y a peu de recherche sur l’hydrodynamique du mélange dans les fluides complexes. Dans notre travail, on étudie des fluides non-Newtoniens formés de solutions diluées de polymères caractérisés par leurs propriétés rhéofluidifiante et viscoélastique. Il s’agit de solutions aqueuses de Polyacrylamide (PAA) ou de la gomme de Xanthan (XG). Afin d’identifier la différence de comportement avec les fluides Newtoniens, une étude expérimentale avec de l’eau est effectuée dans les mêmes conditions que celles pour les fluides non-Newtoniens. Cette étude a été menée, en premier, sur un modèle réduit d’une cuve de mélange de Sanofi Pasteur. Les résultats obtenus, non représentés dans ce mémoire de thèse, nous ont amenés à mettre en place une étude fondamentale de l’écoulement dans un mélangeur de géométrie plus simple. Il s’agit alors de pouvoir contrôler les conditions initiales et de s’affranchir des effets secondaires de l’agitation pour ne s’intéresser qu’au mélange. Pour cela, la géométrie retenue est celle d’un mélangeur en T avec deux entrées perpendiculaires. L’exploration en 2D des champs de vitesse et de concentration de scalaire dans cette jonction en T est assurée simultanément aux moyens des techniques optiques (PIV et PLIF). Les observations montrent un effet non négligeable sur l’hydrodynamique et le mélange lié à la présence de polymères dans l’écoulement. De plus, les résultats obtenus permettent de calculer la tension de Reynolds uv et les flux de masse vc et uc. Ils seront utilisés par la suite pour vérifier leur conformité avec le modèle k epsilon couramment utilisé dans l’industrie. / This thesis presents an experimental study of the mixing in complex fluids which is conducted in partnership with Sanofi Pasteur. The mixture is one of the most common act in everyday life and also in industrial activities. We found in the literature many studies focusing on the mixing tanks with objective to improve performance based on observation of large scale. By cons, in our knowledge, there is few or no research on the hydrodynamics of a mixture in complex fluides. In our work, we study non-Newtonian fluids formed of diluted solution of polymer which characterized by their viscoelastic and shear thinning properties. We used in this study aqueous solutions of polyacrylamide (PAA) or xanthan gum (XG). To identify the difference in behavior with Newtonian fluid, an experimental study with water is carried out under the same conditions as those non-Newtonian fluids. At first, this study was on a reduced mixing tank of Sanofi Pasteur. The results, which not shown in this thesis, led us to develop a fundamental study of flow in a mixer with a simple geometry. The objective is to be able to control the initial conditions and to avoid the side effects of agitation to focus on the mixture. For this, we chose a mixer in a T shape with two perpendicular inputs. Exploring 2D velocity and scalar concentration fields in this T-junction is provided simultaneously of optical techniques (PIV and PLIF). Observations show a significant effect on the hydodynamic and mixture related to the presence of polymers in the flow. In addition, results are used to calculate the Reynolds stress uv and the scalar flux vc and uc. They will be used to check their compliance with the k epsilon model that commonly used in industry.
35

Sistemas de análises químicas em fluxo explorando mecanismos de re-alimentação, calibração multivariada e outras abordagens para melhoria em desempenho / Flow systems exploiting feed-back mechanisms, multivariate calibration and other strategies for improving the analytical performance

Fortes, Paula Regina 30 June 2010 (has links)
Estudos foram conduzidos relativamente ao desempenho dos sistemas de análises em fluxo quando configurados como sistemas inteligentes, associados às técnicas de calibração multivariada ou empregando nanocristais como sensibilizadores. Ainda, melhorias relacionadas às modificações dos fluxos foram avaliadas, especialmente no que se refere à diálise em linha. Neste sentido, foi proposta uma nova estratégia para implementar determinações simultâneas de ferro e vanádio em ligas metálicas envolvendo cinética diferencial. O método baseava-se nas diferentes influências exercidas por Fe2+ e por V4+ na taxa de oxidação de íons iodeto por íons Cr6+ sob condições ácidas. Três diferentes alíquotas de amostra eram inseridas em um fluxo transportador / reagente de KI, confluindo posteriormente com um fluxo de K2Cr2O7. A sobreposição entre as três zonas de amostra estabelecidas resultava em uma zona de amostra complexa com diversos valores de absorbância. Medidas realizadas nos pontos de máximos e minímos do sinal registrado eram mais precisas e continham informações acerca dos diferentes estágios de desenvolvimento da reação e de diferentes condições de concentrações. Em outra estratégia, um sistema MPFS inteligente foi proposto para a determinação turbidimétrica sequencial de sulfato e cloreto em águas naturais. Ambos os métodos foram implementados no mesmo módulo de análises, proporcionando facilidades relativas ao: preparo de amostra em linha; adição de íons sulfato ou cloreto ao meio reacional para melhoria das condições de supersaturação; decisão em tempo real acerca da necessidade ou não da próxima análise. Inicialmente, determinava-se a concentração de cloreto presente na amostra, e este resultado era comparado com um valor pré-determinado. Se este fosse superior, a amostra era analisada novamente visando à determinação de sulfato. Caso contrário, uma nova amostra era analisada. A estratégia resultou em aumento da velocidade analítica e em boas figuras de mérito analítico. Estudos relativos à natureza do fluxo foram conduzidos avaliando-se o desempenho dos fluxos pulsados provenientes de bombas solenóide em relação à eficiência do transporte de massas, dispersão da zona de amostra relacionada com a mudança de sentido do fluxo e eficiência do processo de diálise quando comparados aos fluxos tipicamente laminares. Embora fosse observada a presença de vórtices, o número de Reynolds experimentalmente obtido demonstrou que o fluxo resultante não era turbulento. Porém seu perfil exibia características de mescla turbulenta, melhorando assim o desempenho relativo ao transporte de massas e redução da dispersão da zona de amostra. Entretanto, beneficios relativos a melhorias no processo de diálise foram ausentes devido provavelmente à alta pressão exercida dentre da câmara de diálise, com consequente deformação dos poros da membrana. Nestas situações, um sistema de análises híbrido (com fluxo laminar e mescla turbulenta) seria fortemente recomendado. Finalmente, a implementação de nanocristais quantum dots (QDs) como sensibilizadores em um sistema MPFS envolvendo reação quimioluminescente foi proposta para a determinação de glipizida e gliclazida em formulaçoes farmacêuticas. O método fundamentava-se na oxidação dos íons S2- por Ce4+ em meio ácido. Na presença dos analitos, a intensidade da radiação emitida era inibida. A influência do diâmetro médio dos nanocristais foi avaliada, e os critérios utilizados para o dimensionamento do sistema foram a repetibilidade, a reprodutibilidade e a sensibilidade analítica. Os analitos foram quantificados no mesmo módulo de análises, e boas figuras de mérito analítico foram verificadas. Os resultados obtidos se apresentaram concordantes com aqueles obtidos pela Farmacopéia Britânica / Studies focusing on performance of intelligent analytical flow systems, association with multivariate calibration or use of nanocrystals as sensitizers were carried out. Moreover, improvements related to modifications in flow pattern were evaluated with emphasis to in-line dialysis. To this end, a strategy for implementing simultaneous determinations of iron and vanadium in alloys relying on differential kinetics was proposed. The method was based on the influence of Fe2+ and V4+ on the rate of iodide oxidation by Cr6+ under acidic conditions. Three different plugs of the sample were sequentially inserted into an acidic KI reagent carrier stream, and a confluent K2Cr2O7 solution was added downstream. Overlap between the established plugs led to a complex sample zone with several regions of maximal and minimal absorbance values. Measurements performed on these regions were more precise and revealed the different degrees of reaction development. In another strategy, an intelligent MPFS was proposed for sequential turbidimetric determination of sulphate and chloride in natural waters. Both methods were implemented in the same manifold, providing facilities for: in-line sample cleanup; addition of low amounts of sulphate or chloride ions to the reaction medium for improving supersaturation conditions and real-time decision on the need for next assay. The sample was initially run for chloride determination, and the analytical signal was compared with a preset value. If higher, the sample was run again, now for sulphate determination. Otherwise, next sample was assayed. The strategy led to an increased sample throughput and good analytical figures of merit. Studies focusing on the flow pattern were carried out aiming at the evaluation of the influence of the pulsed flows delivered by solenoid pumps in relation to the efficiency of mass transfer, dispersion related to changes in flow direction of the sample zone and dialysis process as compared with typical laminar flow. Although the establishment of vortices were noted, the experimentally obtained Reynolds number showed that a turbulent flow was not established. Its pattern exhibited characteristics which improved the performance due to the enhanced radial mass transport inherent in turbulent mixing. Comparatively to laminar flow, beneficial aspects were noted in relation to sample dispersion and mass transfer. In relation to dialysis efficiency however process the benefits were not noted probably due to the high pressure inside the dialysis chamber, with consequent membrane pore deformation. In this situation, a hybrid flow analysis system (with laminar flow and turbulent mixing) might be recommended. Implementation of quantum dots nanocrystals (QDs NC) as sensitizers in a MPFS with chemiluminometric detection was proposed for the determinations of gliclazide and glipizide in pharmaceutical formulations. The method relied on the oxidation of sulphite by Ce4+ in acidic medium and, in the presence of the analytes, the emitted radiation of the Ce4+-SO3 2--CdTe QDs system was inhibited. Influence of crystal size was investigated, and the criteria for system optimization were the analytical repeatability, reproducibility and sensitivity. Both analytes were quantified in the same manifold, resulting in good analytical figures of merit. The results were in fairly good agreement with those obtained by the British Pharmacopoeia reference method
36

Sistemas de análises químicas em fluxo explorando mecanismos de re-alimentação, calibração multivariada e outras abordagens para melhoria em desempenho / Flow systems exploiting feed-back mechanisms, multivariate calibration and other strategies for improving the analytical performance

Paula Regina Fortes 30 June 2010 (has links)
Estudos foram conduzidos relativamente ao desempenho dos sistemas de análises em fluxo quando configurados como sistemas inteligentes, associados às técnicas de calibração multivariada ou empregando nanocristais como sensibilizadores. Ainda, melhorias relacionadas às modificações dos fluxos foram avaliadas, especialmente no que se refere à diálise em linha. Neste sentido, foi proposta uma nova estratégia para implementar determinações simultâneas de ferro e vanádio em ligas metálicas envolvendo cinética diferencial. O método baseava-se nas diferentes influências exercidas por Fe2+ e por V4+ na taxa de oxidação de íons iodeto por íons Cr6+ sob condições ácidas. Três diferentes alíquotas de amostra eram inseridas em um fluxo transportador / reagente de KI, confluindo posteriormente com um fluxo de K2Cr2O7. A sobreposição entre as três zonas de amostra estabelecidas resultava em uma zona de amostra complexa com diversos valores de absorbância. Medidas realizadas nos pontos de máximos e minímos do sinal registrado eram mais precisas e continham informações acerca dos diferentes estágios de desenvolvimento da reação e de diferentes condições de concentrações. Em outra estratégia, um sistema MPFS inteligente foi proposto para a determinação turbidimétrica sequencial de sulfato e cloreto em águas naturais. Ambos os métodos foram implementados no mesmo módulo de análises, proporcionando facilidades relativas ao: preparo de amostra em linha; adição de íons sulfato ou cloreto ao meio reacional para melhoria das condições de supersaturação; decisão em tempo real acerca da necessidade ou não da próxima análise. Inicialmente, determinava-se a concentração de cloreto presente na amostra, e este resultado era comparado com um valor pré-determinado. Se este fosse superior, a amostra era analisada novamente visando à determinação de sulfato. Caso contrário, uma nova amostra era analisada. A estratégia resultou em aumento da velocidade analítica e em boas figuras de mérito analítico. Estudos relativos à natureza do fluxo foram conduzidos avaliando-se o desempenho dos fluxos pulsados provenientes de bombas solenóide em relação à eficiência do transporte de massas, dispersão da zona de amostra relacionada com a mudança de sentido do fluxo e eficiência do processo de diálise quando comparados aos fluxos tipicamente laminares. Embora fosse observada a presença de vórtices, o número de Reynolds experimentalmente obtido demonstrou que o fluxo resultante não era turbulento. Porém seu perfil exibia características de mescla turbulenta, melhorando assim o desempenho relativo ao transporte de massas e redução da dispersão da zona de amostra. Entretanto, beneficios relativos a melhorias no processo de diálise foram ausentes devido provavelmente à alta pressão exercida dentre da câmara de diálise, com consequente deformação dos poros da membrana. Nestas situações, um sistema de análises híbrido (com fluxo laminar e mescla turbulenta) seria fortemente recomendado. Finalmente, a implementação de nanocristais quantum dots (QDs) como sensibilizadores em um sistema MPFS envolvendo reação quimioluminescente foi proposta para a determinação de glipizida e gliclazida em formulaçoes farmacêuticas. O método fundamentava-se na oxidação dos íons S2- por Ce4+ em meio ácido. Na presença dos analitos, a intensidade da radiação emitida era inibida. A influência do diâmetro médio dos nanocristais foi avaliada, e os critérios utilizados para o dimensionamento do sistema foram a repetibilidade, a reprodutibilidade e a sensibilidade analítica. Os analitos foram quantificados no mesmo módulo de análises, e boas figuras de mérito analítico foram verificadas. Os resultados obtidos se apresentaram concordantes com aqueles obtidos pela Farmacopéia Britânica / Studies focusing on performance of intelligent analytical flow systems, association with multivariate calibration or use of nanocrystals as sensitizers were carried out. Moreover, improvements related to modifications in flow pattern were evaluated with emphasis to in-line dialysis. To this end, a strategy for implementing simultaneous determinations of iron and vanadium in alloys relying on differential kinetics was proposed. The method was based on the influence of Fe2+ and V4+ on the rate of iodide oxidation by Cr6+ under acidic conditions. Three different plugs of the sample were sequentially inserted into an acidic KI reagent carrier stream, and a confluent K2Cr2O7 solution was added downstream. Overlap between the established plugs led to a complex sample zone with several regions of maximal and minimal absorbance values. Measurements performed on these regions were more precise and revealed the different degrees of reaction development. In another strategy, an intelligent MPFS was proposed for sequential turbidimetric determination of sulphate and chloride in natural waters. Both methods were implemented in the same manifold, providing facilities for: in-line sample cleanup; addition of low amounts of sulphate or chloride ions to the reaction medium for improving supersaturation conditions and real-time decision on the need for next assay. The sample was initially run for chloride determination, and the analytical signal was compared with a preset value. If higher, the sample was run again, now for sulphate determination. Otherwise, next sample was assayed. The strategy led to an increased sample throughput and good analytical figures of merit. Studies focusing on the flow pattern were carried out aiming at the evaluation of the influence of the pulsed flows delivered by solenoid pumps in relation to the efficiency of mass transfer, dispersion related to changes in flow direction of the sample zone and dialysis process as compared with typical laminar flow. Although the establishment of vortices were noted, the experimentally obtained Reynolds number showed that a turbulent flow was not established. Its pattern exhibited characteristics which improved the performance due to the enhanced radial mass transport inherent in turbulent mixing. Comparatively to laminar flow, beneficial aspects were noted in relation to sample dispersion and mass transfer. In relation to dialysis efficiency however process the benefits were not noted probably due to the high pressure inside the dialysis chamber, with consequent membrane pore deformation. In this situation, a hybrid flow analysis system (with laminar flow and turbulent mixing) might be recommended. Implementation of quantum dots nanocrystals (QDs NC) as sensitizers in a MPFS with chemiluminometric detection was proposed for the determinations of gliclazide and glipizide in pharmaceutical formulations. The method relied on the oxidation of sulphite by Ce4+ in acidic medium and, in the presence of the analytes, the emitted radiation of the Ce4+-SO3 2--CdTe QDs system was inhibited. Influence of crystal size was investigated, and the criteria for system optimization were the analytical repeatability, reproducibility and sensitivity. Both analytes were quantified in the same manifold, resulting in good analytical figures of merit. The results were in fairly good agreement with those obtained by the British Pharmacopoeia reference method
37

Etude du mélange gazeux produit par instabilité de Richtmyer-Meshkov en régime initial périodique faiblement diffus / Experimental study of a gaseous mixing zone induced by the Richtmyer-Meshkov instability with a periodic and weakly diffuse initial interface

Graumer, Pierre 04 June 2019 (has links)
Le travail de thèse présenté dans ce manuscrit propose une analyse expérimentale du dé-veloppement spatio-temporel d’une zone de mélange (air/hélium) initiée par instabilité deRichtmyer-Meshkov (IRM). Cette étude s’appuie sur la mise en oeuvre d’un tube à chocspositionné verticalement et sur le développement d’un nouveau protocole expérimental associéà un système innovant de génération de l’interface initiale entre les deux espèces gazeuses enprésence. Ce système est basé sur un dispositif d’obturation/ouverture composé d’un rideau rigiderétractable et d’une série volets mobiles. La caractérisation de l’interface initiale et de l’évolutionspatio-temporelle de la zone de mélange ainsi obtenue est effectuée en exploitant les résultats dedifférentes techniques de mesures telles que la visualisation strioscopique (Schlieren) résolue entemps, la tomoscopie plan laser (TPL) et la Vélocimétrie par Imagerie de Particules (PIV). Enpremier lieu, différentes campagnes de mesures visant à caractériser l’interface initiale ont permisde quantifier la répétabilité du système et de démontrer ses capacités à générer une interfacepériodique faiblement diffuse. Dans un second temps, une étude du mélange gazeux obtenu pourun jeu de paramètres expérimentaux donné, est proposée. L’analyse s’intéresse en particulieraux mécanismes d’initiation et de transition a la turbulence de la zone de mélange produite parl’IRM. L’interaction entre cette zone de mélange en cours de développement et le choc réfléchisur l’extrémité supérieure du tube (phénomène de rechoc) est également étudiée dans l’optique deconfirmer la transition turbulente de la zone de mélange. / This work proposes an experimental analysis of the spatio-temporal development of an air/heliummixing zone promoted by the Richtmyer-Meshkov instability (RMI). This study relies on the useof a vertical shock tube and on the development of a new experimental protocol associated with aninnovative device for the generation of an initial interface between two gazeous species. This deviceconsists a rigid retractable curtain and of a series of rotating shutters. The characterization ofthis initial interface and the spatio-temporal evolution of the RMI-induced mixing zone is carriedout by exploiting the results of various experimental methods such as time resolved Schlierenvisualizations, planar laser mie scattering and Particle Image Velocimetry (PIV). In a first step,various measurement campaigns have made it possible to quantify the repeatability of the newdevice and to demonstrate its ability to generate a periodic, weakly diffused interface. In a secondstep, a study of the gaseous mixing for a given set of experimental parameters is proposed. Theanalysis focuses on the understanding of the underlying mechanisms driving the gaseous interfaceformation and the transition to turbulence of the RMI-induced mixing. The interaction betweenthis mixing zone and the reflected shock from the upper end of the tube (re-shock phenomenon)is also studied in order to confirm the turbulent transition of the mixing zone.
38

Experimental investigation of multi-component jets issuing from model pipeline geometries with application to hydrogen safety

Soleimani nia, Majid 21 December 2018 (has links)
Development of modern safety standards for hydrogen storage infrastructure requires fundamental insight into the physics of buoyant gas dispersion into ambient air. Also, from a practical engineering stand-point, flow patterns and dispersion of gas originating from orifices in the side wall of circular pipe or storage tank need to be studied. In this thesis, novel configurations were considered to investigate the evolution of turbulent jets issuing from realistic pipeline geometries. First, the effect of jet densities and Reynolds numbers on vertical jets were investigated, as they emerged from the side wall of a circular pipe, through a round orifice. The resulting jet flow was thus issued through a curved surface from a source whose original velocity components were nearly perpendicular to the direction of the ensuing jets. Particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) techniques were employed simultaneously to provide instantaneous and time-averaged flow fields of velocity and concentration. The realistic flow arrangement resulted in an asymmetric flow pattern and a significant deflection from the vertical axis of jets. The deflection was influenced by buoyancy, where heavier gases deflected more than lighter gases. These realistic jets experienced faster velocity decay, and asymmetric jet spreading compared to round jets due to significant turbulent mixing in their near field. In addition to that, horizontal multi-component jets issuing from a round orifice on the side wall of a circular tube were also investigated experimentally by the means of simultaneous velocity and concentration measurements. A range of Reynolds numbers and gas densities were considered to study the effects of buoyancy and asymmetry on the resulting flow structure. The realistic pipeline jets were always exhibited an asymmetry structure and found to deflect about the jet's streamwise axis in the near field. In the far field, the buoyancy dominated much closer to the orifice than expected in the axisymmetric round jet due to the realistic leak geometry along with the pipeline orientation considered in this study. In general, significant differences were found between the centreline trajectory, spreading rate, and velocity decay of conventional horizontal round axisymmetric jets issuing through flat plates and the pipeline leak-representative jets considered in the present study. Finally, the dispersion of turbulent multi-component jets issuing from high-aspect-ratio slots on the side wall of a circular tube were studies experimentally by employing simultaneous PIV and PLIF techniques. Two transversal & longitudinal oblong geometries in respect to the longitudinal axes of the tube , and with an aspect ratio of 10 were considered in this study. Both horizontal and vertical orientations along with broad range of Reynolds numbers and gas densities were considered to investigate the effects of buoyancy and asymmetry on the resulting flow structure. The ensuing jets were found to deflect along the jet streamwise axis, once more, due to the realistic pipeline leak-representative configuration. It was also found that increases in aspect ratio of these realistic jets caused a reduction in the angle of deflection, jet centreline decay rates and the width growth on both velocity and scalar fields compared to their round jets counterparts, most notably in the far field. These findings indicate that conventional jets (those that are issuing through flat surfaces) assumptions are inadequate to predict gas concentration, entrainment rates and, consequently, the extent of the flammability envelope of realistic gas leaks. Thus, extreme caution is required when using conventional jet assumptions to describe the physics of a buoyant jet emitted from realistic geometries. / Graduate

Page generated in 0.1176 seconds