• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bearbetningsmaskin för fälgar i kolfiberkomposit / Trimming Tool for CFRP Rims

Grandicki, Andreas January 2015 (has links)
Detta examensarbete har utförts på uppdrag av Koenigsegg Automotive AB, som utvecklar, tillverkar och säljer högpresterande sportbilar. Företaget erbjuder fälgar tillverkade helt i kolfiberkomposit, som ger betydande viktbesparingar i jämförelse med traditionella metallfälgar. Efter tillverkningen kräver fälgarna viss bearbetning vid anläggningsytan mellan fälg och däck. Syftet med examensarbetet har varit att undersöka möjligheten att utföra bearbetningen av fälgarna in-house i Ängelholm, och målet har varit att konstruera en maskin för detta ändamål. Projektet inleddes med en litteratursökning, där svårigheter och möjligheter gällande bearbetning av kolfiberkompositer undersöktes. Till följd av de undersökningar som gjordes, valdes bearbetningsmetoden svarvfräsning och ett antal konstuktionskoncept genererades. Genom ett antal utvärderingar utvecklades ett speciellt koncept vidare till ett komplett produktförslag. Produktförslaget är komplett med analyser, beräkningar samt tillverkningsunderlag, som ger uppdragsgivaren bättre insikt i sina möjligheter. Även underlag som tillåter en framtida CE-märkning har tagits fram. Projektet har följt Fredy Olssons konstruktionsmetod. / The following thesis has been performed in cooperation with Koenigsegg Automotive AB, which develops, manufactures and sells high-performance sportscars. Koenigsegg offers rims made completely from carbon fiber composite, which yields substantial benefits in stiffness and weight compared to their traditional metal counterparts. After the manufacturing of the rims, some trimming is necessary in the contact surface between rim and tire. The purpose of this thesis has been to examine the possibility of performing the necessary trimming in-house in Ängelholm, by designing a special tool. The project began with a literature study, where possibilities and difficulties of machining carbon fiber composites were examined. As a result of the study, the manufacturing process turn-milling was chosen, and a number of concepts were generated. Through a series of evaluations, one concept was further developed to a final product. The suggested product is complete with calculations, analyses and drawings, which gives Koenigsegg a better insight of future possibilities. A solid foundation for future CE-marking has also been produced. The project has followed Fredy Olssons methods of Engineering Design.
2

Modellbasierte Prozessgestaltung zur Beeinflussung von Formabweichungen zylindrischer Bauteile beim orthogonalen Drehfräsen

Hertel, Matthias 21 July 2023 (has links)
Der Prozess des orthogonalen Drehfräsens ermöglicht eine hohe Produktivität, eine hohe geometrische Flexibilität hinsichtlich erzeugbarer Mantelflächenformen, einen gesicherten Spanbruch sowie die Herstellung drallfreier Oberflächen. Die derzeit erreichbare Form- und Maßgenauigkeit sowie Oberflächenqualität, die mit diesem Verfahren erzielt werden können, lässt bei Bauteilen mit hohen konstruktiven Anforderungen keine Substitution des etablierten Rundschleifprozesses zu. Das dynamische Verhalten der Prozesskräfte und der differente Schneidkantenverschleiß entlang der im Eingriff befindlichen Schneidkante sind die Haupteinflussgrößen für Geradheitsfehler der Mantellinie und damit verantwortlich für Abweichungen von der gewünschten Bauteilgeometrie. Durch die Lokalisierung des Spanprozesses auf die Stirnschneide können die Eingriffsverhältnisse und die auftretenden Prozesskräfte beim orthogonalen Drehfräsen exakt bestimmt und prozessspezifische Werkzeuggeometrien mithilfe des entwickelten Prozessmodells abgeleitet werden. Das Ziel der Untersuchungen war die Entwicklung einer Prozessstrategie zur Reduktion von Geometrieabweichungen zylindrischer Bauteile durch einen robusten Prozess des exzentrisch-orthogonalen Drehfräsens ohne Axialvorschub. Dadurch lassen sich ökonomische und ökologische Vorteile hinsichtlich einer Substitution der Rundschleifbearbeitung durch die Komplettbearbeitung komplexer Bauteile in Dreh-Fräsbearbeitungszentren erzielen. Aus dem Stand der Forschung und Technik ist bekannt, dass beim orthogonalen Drehfräsen prozessbedingte Gestaltabweichungen erster bis vierter Ordnung an der Werkstückmantelfläche auftreten können. In Abhängigkeit von den konstruktiv geforderten Toleranzen bei Bauteilen mit zylindrischen und konvex gekrümmten Mantelflächen, kann die prozesssichere Anwendung des orthogonalen Drehfräsens derzeit der Schrupp- und Vorschlichtbearbeitung zugeordnet werden. Ergebnisse zur prozesssicheren Substitution der Außenrundschleifbearbeitung durch orthogonales Drehfräsen wurden bislang nicht veröffentlicht. Daraus leitete sich die Forschungsfrage ab, ob eine Fertigbearbeitung von zylindrischen Mantelflächen durch orthogonales Drehfräsen, die bisher toleranzbedingt spanenden Verfahren mit geometrisch unbestimmter Schneide vorbehalten blieb, grundsätzlich möglich ist. Desweiteren leiteten sich auch Forschungsfragen zu den genauen Ursachen und der Beeinflussbarkeit dieser prozessbedingten Gestaltabweichungen beim orthogonalen Drehfräsen ab. Ein erstes Ziel dieser Arbeit war die Herleitung und Systematisierung der technologischen Grundlagen des Verfahrens orthogonales Drehfräsen, um den Stirnschneideneingriff, der die finale Mantelfläche erzeugt, mathematisch beschreiben zu können. Abgrenzend zum Stand der Technik wurde ein neuartiges Prozessmodell zur Schlichtbearbeitung zylindrischer Mantelflächen durch orthogonales Drehfräsen ohne Axialvorschub vorgestellt, das eine geometrische Ableitung aller technologischen Parameter auf Basis der Werkstückgeometrie (Mantellinienbreite und Durchmesser) ermöglicht. Das umfasst die Spezifikation der Werkzeuggeometrie und die Bestimmung sämtlicher Einstellgrößen im Prozess. Desweiteren erlaubt dieses Modell eine genaue Bestimmung der Fehlereinflüsse auf die resultierende Zylindrizität der Mantelfläche. Ein weiteres Ziel der Arbeit war die Verifikation des Prozessmodells durch empirische Untersuchungen an Proben mit zylindrischen Mantelflächen mithilfe von Prozesskraftmessungen. Dabei sollte das dynamische Verhalten der Prozesskräfte durch den variierenden Stirnschneideneingriff nachgewiesen werden. Anschließend erfolgte ein empirischer Nachweis zur Verringerung der Prozesskraftdynamik, um steifigkeitsbedingte Fehlereinflüsse durch ungewollte Relativbewegungen zwischen Schneide und Werkstückmantellinie kompensieren zu können. Da sich entlang der Schneidkante beim orthogonalen Drehfräsen differente Verschleißzustände ausbilden, wurde in empirischen Untersuchungen der Schneidkantenverschleiß über den Standweg dokumentiert und ausgewertet. Damit konnten der Verschleißeinfluss des Belastungskollektivs sämtlicher Spanungsparameter in diskreten Abständen entlang der Schneidkante ermittelt und die Ableitung des mechanisch haltbaren Optimums für jeden Schneidenbereich im arbeitsscharfen Zustand ermöglicht werden. Auf Grundlage des entwickelten Prozessmodells zum orthogonalen Drehfräsen wurde auch eine darauf angepasste Prozessstrategie vorgestellt, mit der die Bewegungen für die Zustellung, den Vorschub und den Rückzug des Werkzeuges relativ zur Werkstückmantelfläche definiert wurden. Diese Bewegungen verursachen stets Unstetigkeiten im Prozess, die einen maßgeblichen Einfluss auf den resultierenden Rundheitsfehler an der Werkstückmantelfläche haben. Die Prozessstrategie ermöglichte eine Minimierung steifigkeitsbedingter Fehlereinflüsse auf die Rundheit und damit auf die resultierende Zylindrizität der Werkstückmantelfläche.:1. Einleitung .......................................................................................................... 1 2. Stand der Forschung und Technik .................................................................... 4 2.1. Gestaltabweichungen an zylindrischen Mantelflächen ................................ 8 2.1.1. Rundheit ............................................................................................... 9 2.1.2. Geradheit ............................................................................................ 10 2.1.3. Zylindrizität .......................................................................................... 11 2.2. Technologieentwicklung des orthogonalen Drehfräsens ........................... 12 2.3. Anwendungen............................................................................................ 28 2.4. Stand der Werkzeugentwicklung ............................................................... 36 2.5. Untersuchungen zu Prozesskräften und deren Dynamik ........................... 39 2.6. Untersuchungen zum Einfluss der Exzentrizität auf die Werkstückmantellinie ................................................................................. 44 2.7. Untersuchungen zur Oberflächenstrukturierung ........................................ 47 2.8. Untersuchungen zum Werkzeugverschleiß ............................................... 49 2.9. Schneidkantendefinition und Mikrospanbildung......................................... 52 2.10. Defizite im Stand der Forschung und Technik ........................................... 62 3. Vorgehensweise ............................................................................................. 64 4. Prozessgestaltung .......................................................................................... 69 4.1. Systemgrößen ........................................................................................... 69 4.1.1. Werkstückgeometrie ........................................................................... 69 4.1.2. Geometrisches Prozessmodell ........................................................... 70 4.1.3. Werkzeuggeometrie ............................................................................ 79 4.1.4. Prozesskühlung .................................................................................. 90 4.1.5. Werkzeugmaschine ............................................................................ 91 Inhaltsverzeichnis II 4.2. Einstellgrößen ............................................................................................ 92 4.2.1. Zahnvorschub ..................................................................................... 92 4.2.2. Schnitttiefe .......................................................................................... 94 4.2.3. Exzentrizität ........................................................................................ 95 4.2.4. Schneidenanzahl .............................................................................. 106 4.2.5. Schneidenvorversatz ........................................................................ 109 4.2.6. Werkzeugdrehzahl ............................................................................ 113 4.2.7. Kinematik der Werkzeugzustellbewegung ........................................ 115 4.3. Prozessgrößen ........................................................................................ 123 4.3.1. Spanungsdicke ................................................................................. 124 4.3.2. Spanungsquerschnitt ........................................................................ 128 4.3.3. Prozesskraftverlauf ........................................................................... 129 4.4. Ergebnisgrößen ....................................................................................... 134 4.4.1. Geradheit der Mantellinie .................................................................. 134 4.4.2. Rundheit ........................................................................................... 140 5. Experimentelle Untersuchungen ................................................................... 144 5.1. Festlegung der Systemgrößen ................................................................ 145 5.1.1. Werkzeuggeometrie .......................................................................... 145 5.1.2. Werkstückgeometrie ......................................................................... 148 5.1.3. Werkzeugmaschine und Prozesskühlung ......................................... 149 5.2. Festlegung der Einstellgrößen ................................................................. 151 5.2.1. Zahnvorschub, Schnitttiefe und Exzentrizität .................................... 151 5.2.2. Werkzeugdrehzahl ............................................................................ 152 5.2.3. Werkzeugzustellbewegung ............................................................... 153 5.3. Ergebnisse der experimentellen Untersuchungen ................................... 155 5.3.1. Analyse des dynamischen Prozesskraftverhaltens ........................... 155 5.3.2. Analyse der Werkstückgeometrieabweichungen .............................. 169 5.3.3. Analyse des Werkzeugverschleißes ................................................. 183 Inhaltsverzeichnis III 6. Fazit .............................................................................................................. 206 7. Zusammenfassung ....................................................................................... 210 8. Ausblick ........................................................................................................ 213 9. Anlagen ......................................................................................................... 9-1 9.1. Ergebnisse der Schneidkantenpräparation ............................................... 9-1 9.2. Ergebnisse zur Prozesskraftdynamik ....................................................... 9-4 9.3. Ergebnisse der Werkstückgeometrieuntersuchungen ............................ 9-24 9.4. Ergebnisse zum Werkzeugverschleißverhalten ...................................... 9-35

Page generated in 0.0481 seconds