• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 435
  • 212
  • 128
  • 72
  • 16
  • 13
  • 10
  • 10
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • Tagged with
  • 1101
  • 1101
  • 794
  • 194
  • 161
  • 151
  • 141
  • 127
  • 121
  • 113
  • 108
  • 100
  • 98
  • 96
  • 95
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

Modeling and Experimental Validation of a Rankine Cycle Based Exhaust WHR System for Heavy Duty Applications / Modellering och experimentell validering av ett Rankinecykelbaserat Waste Heat Recovery-system

Carlsson, Carin January 2012 (has links)
To increase the efficiency of the engine is one of the biggest challenges for heavy vehicles. One possible method is the Rankine based Waste Heat Recovery. Crucial for Rankine based Waste Heat Recovery is to model the temperature and the state of the working fluid. If the state of the working fluid is not determined, not only the efficiency of the system could be decreased, the components of thesystem might be damaged.A Simulink model based on the physical components in a system developed by Scania is proposed. The model for the complete system is validated against a reference model developed by Scania, and the component models are further validated against measurement data. The purpose of the model is to enable model based control, which is not possible with the reference model. The main focus on the thesis is to model the evaporation and condensation to determine state and temperature of the working fluid. The developed model is compared to a reference model with little differences for while stationary operating for both the components and the complete system. The developed model also follows the behavior from measurement data. The thesis shows that two phase modeling in Simulink is possible with models based on the physical components.
342

Two-Phase Flow Within Narrow Annuli

Dillon, Chad Michael 12 July 2004 (has links)
A study of two-phase flow in annular channels with annular gaps of less than 1 mm is useful for the design and safety analysis of high power density systems such as accelerator targets and nuclear reactor cores. Though much work has been done on pressure drop in two-phase flow, designers rely mostly on empirical models and correlations; hence, it is valuable to study their applicability for different channel sizes, geometries, and gas qualities. The pressure drop along a concentric annular test section was measured for cases of either constant quality or variable quality along its length (such as in sub-cooled and flow boiling). A porous tube was used to inject gas along the inner surface of the annular channel, thereby simulating the case of flow boiling along the inner surface. The data were compared to predictions of various models and correlations. Additionally, the effect of wall vibrations on the pressure drop was examined. Experiments were conducted by imposing vibrations of known amplitudes and frequencies on the outer tube of the annulus. Wall vibrations were thought to be important for flow in microchannels where the vibration amplitudes may be significant compared to the channel hydraulic diameter. The results obtained in this investigation indicate that the pressure drop correlation given by Beattie and Whalley provides the best agreement with the data for both porous tube gas injection (i.e. variable quality) and constant quality two-phase flow within the narrow annulus. Furthermore, the results show that there is a minimal effect of vibrations on two-phase pressure drop over the range of frequencies and amplitudes studied.
343

Pore Formation in High Intensity Beam Drilling

Wu, Jia-han 03 August 2012 (has links)
This text pursues the causes and phenomena in the course of the collapse of the molten metal layer surrounding a keyhole which is full of vapor and liquid particles during the high energy laser or electron beam drilling process. And the formation mechanism of the pores for the drilling process, to study the collapse phenomenon of the liquid layer is essential. In the research the collapse of the keyhole is taken as approximated to a transition between the slug and annular two-phase flows in a vertical pipe of varying cross-section. We develop and solve a quasi-steady, one-dimensional model for two phase flow with the assumption that the mixture in the core homogenous, ignoring the friction of the liquid layer, regarding the flow in the keyhole as supersonic, considering the mass transfer of the liquid layer to the keyhole. Two-phase flow can be liquid particle entrainment characteristics, infiltration precipitation, divided into two regions. The collapse of keyhole resulted from the infiltration of the liquid particles is chained to the pore formation. Based on the realization of annular two phase flow, In this text, that the liquid into the holes in the physical properties and caused pores formation.
344

The free surface deformation affected by a two-dimensional thermocapillary flow

Su, Heng-yi 27 August 2012 (has links)
This project is to explore the manufacturing and processing of laser or electron beam, formed on the surface morphology after curing and processing parts, such as surfacefilled, depression, or the formation of ripples; These reactions will directly affect the surface heat treatment and welding quality of thefinished product This study to consider the mass, momentum and energy equations, the introduction of theinterface and boundary conditions to simulate the real process In order to promote quality stability, and a large amount of production capacity and reduce costs, we must understand the institutions of the reaction In this thesis, the phase field method (Phase-field method) (Two-phase flow) two-phase flow simulation of metal surface by a concentrated source of heat melt the transient heat flow behavior
345

Thermal and fluid flow effects on bubble growth at a solidification front

Wu, Ming-chang 30 August 2012 (has links)
The study applies the phase-field method to simulate the behavior between bubble and liquid-solid front in the solidification. During the process, the two-phase flow module is used to match up with temperature and phase-field function to determine the percentage of- solid, liquid, and gas- in the domain. The governing equations for mass, momentum and energy contain coefficients which are related to percentage of phases.The result show that the surface tension and the temperature difference will influence the shape of bubble and the velocity of solidification.
346

Experimental Two-Phase Flow Characterization of Subcooled Boiling in a Rectangular Channel

Estrada Perez, Carlos E. 16 January 2010 (has links)
On the efforts to provide a reliable source of experimental information on turbulent subcooled boiling ow, time resolved Particle Tracking Velocimetry (PTV) experiments were carried out using HFE-301 refrigerant ow through a vertical rectangular channel with one heated wall. Measurements were performed at liquid Reynolds numbers of 3309, 9929 and 16549 over a wall heat flux range of 0.0 to 64.0 kW=m2. From the PTV measurements, liquid two dimensional turbulence statistics are available, such as: instantaneous 2-D velocity fields, time-averaged axial and normal velocities, axial and normal turbulence intensities, and Reynolds stresses. The present results agree with previous works and provide new information due to the 2-D nature of the technique, for instance, this work shows that by increasing heat ux, the boiling bubbles influence on the liquid phase is portrayed as a persistent increase of axial velocity on regions close to the heater wall. This persistent increase on the axial velocity reaches a maximum value attributed to the terminal bubble velocity. These new observed phenomena must be considered for the development and improvement of two-phase ow turbulence models. To this end, an extensive error analysis was also performed with emphasis on the applicability of the PTV measurement technique on optically inhomogeneous flows. The error quantification exhibited negligible optically induced errors for the current conditions, making the data acquired in this work a vast and reliable source.
347

Heat transfer characteristics of a two-pass trapezoidal channel and a novel heat pipe

Lee, Sang Won 02 June 2009 (has links)
The heat transfer characteristics of airflows in serpentine cooling channels in stator vanes of gas turbines and the novel QuTech® Heat Pipe (QTHP) for electronic cooling applications were studied. The cooling channels are modeled as smooth and roughened two-pass trapezoidal channels with a 180° turn over a range of Reynolds numbers between about 10,000 and 60,000. The naphthalene sublimation technique and the heat and mass transfer analogy were applied. The results showed that there was a very large variation of the local heat (mass) transfer distribution in the turn and downstream of the turn. The local heat (mass) transfer was high near the end wall and the downstream outer wall in the turn and was relatively low in two regions near the upstream outer wall and the downstream edge at the tip of the divider wall in the turn. The variation of the local heat (mass) transfer was larger with ribs on two opposite walls than with smooth walls. The regional average heat (mass) transfer was lower in the turn and higher in the entire channel with the flow entering the channel through the larger straight section than when the flow was reversed. The pressure drop across the turn was higher with the flow entering the channel through the larger channel than when the flow was reversed. Thermal performance of the QuTech® Heat Pipe was identified over a range of inclination angles between 90° and -90° and thermal mechanism of the QTHP was studied with GC-MS, ICP-OES, XRD, XPS, and DSC. This study resulted in the following findings: the performance of the QTHP was severely dependent on gravity; the QTHP utilizes water as working fluid; there were inorganic components such as Na, K, P, S, and Cr, etc.; and the vaporization temperature of the working fluid (mostly water) was lower than the boiling temperature of pure water. This was due to the presence of inorganic salt hydrates in the QTHP. It may be concluded that thermal performance of heat pipes increases with additional latent heat of fusion energy and energy required to release water molecules from salt hydrates.
348

Upscaling methods for multi-phase flow and transport in heterogeneous porous media

Li, Yan 2009 December 1900 (has links)
In this dissertation we discuss some upscaling methods for flow and transport in heterogeneous reservoirs. We studied realization-based multi-phase flow and transport upscaling and ensemble-level flow upscaling. Multi-phase upscaling is more accurate than single-phase upscaling and is often required for high level of coarsening. In multi-phase upscaling, the upscaled transport parameters are time-dependent functions and are challenging to compute. Due to the hyperbolic feature of the saturation equation, the nonlocal effects evolve in both space and time. Standard local two-phase upscaling gives significantly biased results with reference to fine-scale solutions. In this work, we proposed two types of multi-phase upscaling methods, TOF (time-offlight)- based two-phase upscaling and local-global two-phase upscaling. These two methods incorporate global flow information into local two-phase upscaling calculations. A linear function of time and time-of-flight and a global coarse-scale two-phase solution (time-dependent) are used respectively in these two approaches. The local boundary condition therefore captures the global flow effects both spatially and temporally. These two methods are applied to permeability distributions with various correlation lengths. Numerical results show that they consistently improve existing two-phase upscaling methods and provide accurate coarse-scale solutions for both flow and transport. We also studied ensemble level flow upscaling. Ensemble level upscaling is up scaling for multiple geological realizations and often required for uncertainty quantification. Solving the flow problem for all the realizations is time-consuming. In recent years, some stochastic procedures are combined with upscaling methods to efficiently compute the upscaled coefficients for a large set of realization. We proposed a fast perturbation approach in the ensemble level upscaling. By Karhunen-Lo`eve expansion (KLE), we proposed a correction scheme to fast compute the upscaled permeability for each realization. Then the sparse grid collocation and adaptive clustering are coupled with the correction scheme. When we solve the local problem, the solution can be represented by a product of Green's function and source term. Using collocation and clusering technique, one can avoid the computation of Green's function for all the realizations. We compute Green's function at the interpolation nodes, then for any realization, the Green's function can be obtained by interpolation. The above techniques allow us to compute the upscaled permeability rapidly for all realizations in stochastic space.
349

Analytical and Experimental Study of Annular Two-Phase Flow Friction Pressure Drop Under Microgravity

Nguyen, Ngoc Thanh 2009 December 1900 (has links)
Two-phase liquid-gas flow has a wide variety of applications in space, including active thermal control systems, high-power communications satellites, heat pumps and space nuclear reactors. Two-phase systems have many potential advantages over current single-phase systems due to reductions in system size, weight and power consumption. The mechanisms of pressure drop, heat transfer coefficients, void fractions, and flow regimes must be well understood under microgravity conditions in order to design reliable two-phase systems. The main objective of this present research is to develop a new mathematical model that can accurately predict the annular two-phase friction pressure drop to optimize the design of two-phase systems. The two-phase flow tests were conducted aboard the NASA KC-135 aircraft by the Interphase Transport Phenomena (ITP) group from Texas A&M University. The two-phase flow pressure drops were measured across a single transparent test section 12.7 mm ID and 1.63 m long in annular regimes under microgravity conditions during two flight campaigns. Different from previous work, this was the first time both the void fraction and the film thickness were measured under microgravity conditions. The empirical correlations for the interfacial friction factor and void fraction were developed from 57 experimental data using a linear least squares regression technique. The annular two-phase friction pressure drop can be predicted by the new mathematical model requiring only knowledge of the length and diameter of the tube, liquid and vapor mass flow rates, and properties of the working fluid. In addition, the new mathematical model was validated using Foster-Miller & ITP data collected over twelve flights aboard the KC-135 with working fluid R-12 (77 data points), Sundstrand data collected aboard the KC-135 with working fluid R-114 (43 data points) and Zhao and Rezkallah data aboard the KC-135 with working fluid water and air (43 data points). Compared with the LockhartMartinelli model, Wheeler model, Chen model and homogeneous model, the new mathematical model is the optimal model for predicting the two-phase friction pressure drop in annular regimes. The majority of the data falls within +-20% of the proposed correlation and the average error is 12%.
350

A Characterization of a Dual Chambered, Two Phase Separator

Klein, Casey 2009 December 1900 (has links)
A new two phase separator for use in space applications has been invented. It is a vortex separator designed to accommodate gas driven two phase flows of gas and liquid. The work presented here is a first of a kind study of this newly invented separator and is meant to determine the minimum inlet gas flow rate necessary for a stable vortex inside the separator for different separator geometries. A dimensional scaling analysis was done to predict this minimum inlet gas flow rate. Experiments were performed on the ground and in conjunction with NASA using their microgravity simulating plane to determine this minimum inlet gas flow rate. The results of the experiments and scaling analysis are compared. The new design consists of two chambers, a vortex generator and a separation chamber, meant to divide the functions of vortex creation and phase separation. The two phase flow is injected tangentially into the vortex generator causing the inlet linear momentum to be transformed into azimuthal momentum. The two phase mixture in the vortex generator then moves into the separation chamber where the two phases separate due to the density difference between the phases. The dimensional scaling analysis used the Weber number to predict the minimum rotational velocity of the spinning flow in the separation chamber during a stable vortex. This rotational velocity was related to the inlet gas flow rate by the inlet momentum rate. The scaling used the dimensions of each separator tested to predict the minimum inlet gas flow rate needed for a stable vortex. In all, twelve separators were tested, eleven on the ground and one on the plane. The ground testing was a parametric study varying the sizing of the separator components. The flight experiments kept the separator geometry constant and varied the gravitational field in which the separator operated. In general, the minimum inlet gas flow rate increased with the ratio of separation chamber diameter to vortex generator diameter. This same trend was consistent with the dimensional scaling analysis. Also, the inlet flow rate increases with gravitational acceleration.

Page generated in 0.0659 seconds