Spelling suggestions: "subject:"twophase"" "subject:"two.phase""
301 |
Modeling of blood flow in the microcirculationTessendorf, Steven D. January 1985 (has links)
Call number: LD2668 .T4 1985 T47 / Master of Science
|
302 |
Application of the rate form of the equation of state for the dynamic simulation of thermal-hydraulic systems / Lambert Hendrik FickFick, Lambert Hendrik January 2013 (has links)
The modelling of multi-phase water
flow is an important modern-day design tool used by engineers
to develop practical systems which are beneficial to society . Multi-phase water
flow can
be found in many important industrial applications such as large scale conventional and nuclear
power systems, heat transfer machinery, chemical process plants, and other important examples.
Because of many inherent complexities in physical two-phase
flow processes, no generalised
system of equations has been formulated that can accurately describe the two-phase
flow of water at all flow conditions and system geometries. This has led to the development of many different models for the simulation of two-phase
flow at specific conditions. These models vary greatly in complexity.
The simplest model that can be used to simulate two-phase
flow is termed the homogeneous equilibrium (HEM) two-phase flow model. This model has been found useful in investigations of choking and flashing
flows, and as an initial investigative model used before the formulation
of more complex models for specific applications. This
flow model is fully de ned by three conservation
equations, one each for mass, momentum and energy. To close the model, an equation
of state (EOS) is required to deliver system pressure values. When solving the HEM, a general
practice is to employ an equation of state that is derived from a fundamental expression of the
second law of thermodynamics. This methodology has been proven to deliver accurate results
for two-phase system simulations.
This study focused on an alternative formulation of the equation of state which was previously
developed for the time dependent modelling of HEM two-phase
flow systems, termed the rate
form of the equation of state (RFES). The goal of the study was not to develop a new formulation
of the EOS, but rather to implement the RFES in a transient simulation model and to
verify that this implementation delivers appropriate results when compared to the conventional
implementation methodology. This was done by formulating a transient pipe and reservoir
network model with the HEM, and closing the model using both the RFES and a benchmark
EOS known to deliver accurate system property values. The results of the transient model
simulations were then compared to determine whether the RFES delivered the expected results.
It was found that the RFES delivered sufficiently accurate results for a variety of system
transients, pressure conditions and numerical integration factors. / MIng (Nuclear Engineering), North-West University, Potchefstroom Campus, 2014
|
303 |
Application of the rate form of the equation of state for the dynamic simulation of thermal-hydraulic systems / Lambert Hendrik FickFick, Lambert Hendrik January 2013 (has links)
The modelling of multi-phase water
flow is an important modern-day design tool used by engineers
to develop practical systems which are beneficial to society . Multi-phase water
flow can
be found in many important industrial applications such as large scale conventional and nuclear
power systems, heat transfer machinery, chemical process plants, and other important examples.
Because of many inherent complexities in physical two-phase
flow processes, no generalised
system of equations has been formulated that can accurately describe the two-phase
flow of water at all flow conditions and system geometries. This has led to the development of many different models for the simulation of two-phase
flow at specific conditions. These models vary greatly in complexity.
The simplest model that can be used to simulate two-phase
flow is termed the homogeneous equilibrium (HEM) two-phase flow model. This model has been found useful in investigations of choking and flashing
flows, and as an initial investigative model used before the formulation
of more complex models for specific applications. This
flow model is fully de ned by three conservation
equations, one each for mass, momentum and energy. To close the model, an equation
of state (EOS) is required to deliver system pressure values. When solving the HEM, a general
practice is to employ an equation of state that is derived from a fundamental expression of the
second law of thermodynamics. This methodology has been proven to deliver accurate results
for two-phase system simulations.
This study focused on an alternative formulation of the equation of state which was previously
developed for the time dependent modelling of HEM two-phase
flow systems, termed the rate
form of the equation of state (RFES). The goal of the study was not to develop a new formulation
of the EOS, but rather to implement the RFES in a transient simulation model and to
verify that this implementation delivers appropriate results when compared to the conventional
implementation methodology. This was done by formulating a transient pipe and reservoir
network model with the HEM, and closing the model using both the RFES and a benchmark
EOS known to deliver accurate system property values. The results of the transient model
simulations were then compared to determine whether the RFES delivered the expected results.
It was found that the RFES delivered sufficiently accurate results for a variety of system
transients, pressure conditions and numerical integration factors. / MIng (Nuclear Engineering), North-West University, Potchefstroom Campus, 2014
|
304 |
TOPFLOW-Experiments on Direct Condensation and Bubble EntrainmentSeidel, Tobias, Lucas, Dirk, Beyer, Matthias 16 February 2016 (has links) (PDF)
Direct Contact Condensation between steam and water as well as bubble entrainment below the water surface play an important role in different accident scenarios for light water reactors. One example is the emergency core cooling water injection into a two-phase mixture. It has to be considered for example to evaluate potential pressurized thermal shock phenomena.
This report documents experiments conducted in flat basin inside the TOPFLOW pressure chamber aiming on the generation of a database useful for CFD model development and validation. It comprises 3 different setups: condensation at a stratified flow of sub-cooled water, condensation at a sub-cooled water jet and a combination of both phenomena with steam bubble entrainment. The documentation includes all details on the experimental set up, on experimental conditions (experimental matrices), on the conduction of the experiments, on measuring techniques used and on data evaluation procedures. In addition, selected results are presented.
|
305 |
A numerical study on the effects of surface and geometry design on water behaviour in PEM fuel cell gas channelsAlrahmani, Mosab January 2014 (has links)
Water management is a serious issue that affects the performance and durability of PEM fuel cells. It is known, from previous experimental investigations, that surface wettability has influence on water behaviour and fuel cell performance. This finding has lead researchers to develop numerical tools for further investigation of the liquid water behaviour in gas channels. The Volume-of-Fluid (VOF) method has been used in a wide range of studies for its advantage of showing the multi-phase interface in a Computational Fluid Dynamics (CFD) simulation to understand liquid water behaviour in gas channels. In this thesis, numerical study has been carried out to examine the behaviour of liquid water in gas channels. The dynamic movement of the liquid water in the channel and the associated pressure drop, water saturation and water coverage of the GDL have been investigated. Firstly, flow diffusion into the GDL was examined to determine its effect on liquid droplet behaviour in a small section of a gas channel. Furthermore, the effects of the percentage of flow diffusion, GDL wettability, pore size, and water inlet velocity were investigated. Fluid diffusion into GDL found to have insignificant impact on liquid water behaviour so further investigations has been carried with a solid GDL surface. Secondly, gas channel geometry effect on liquid water behaviour was studied. Square, semicircle, triangle, trapezoid with a long base and trapezoid with a short base were compared to find suitable cross section geometry to carry wall wettability investigations. Among the examined geometries, the square cross section showed reasonable results for both scenarios of geometry design, fixed Reynolds number and fixed GDL interface. The effect of wall wettability was assessed by comparing nine different wall/GDL wettability combinations for straight and bend channels. Wall wettability found to have an impact on liquid water behaviour but not as much as GDL wettability. It affects liquid water saturation in the channel by a great deal by accumulating water in the channel edges affecting water behaviour. This was also proven in the last test case of a long channel where water accumulation was investigated by running the calculation until the percentage of water saturation is stabilized. It is also concluded that changing wall wettability from hydrophobic to hydrophilic doubles the percentage of channel occupied by liquid water and increases the time to reach steady state.
|
306 |
A CFD Method for Simulation of Gas-Liquid Flow in Cooling Systems : An Eulerian-Eulerian ApproachLind, Malin, Josefsson, Karl Johan January 2016 (has links)
When designing modern engines it is important to construct a cooling system that cools the engine structure efficiently. Within the cooling system there is always a certain amount of air which can accumulate and form air pockets in critical areas, such as the water jacket, which can lead to wall degradation. A Computational Fluid Dynamics (CFD) method in STAR-CCM+ from CD-adapco, was derived at Volvo Cars in order to study the accumulation of air bubbles in the water jacket. The method was derived by investigating and evaluating already existing methods. The method initially considered as the best suited was the Eulerian-Eulerian approach. The method was validated against three simpler geometries where experimental data was available. The Eulerian-Eulerian approach treats both phases, liquid and gas, as continuous phases. The idea with the method is to solve the Navier-Stokes equation, the continuity equation and the energy equation for both phases using the Eulerian approach, therefore called Eulerian-Eulerian. The interaction between the two phases was important to model properly which was done by including several interaction models within STAR-CCM+. By tuning different coefficients, which were investigated by a thorough parameter study, the method resembled the experimental data in a satisfying way. The best suited mesh for these simpler geometries was a directed mesh. However, the mesh in the water jacket was automatically generated by STAR-CCM+ and the simpler cases were therefore validated with an automated mesh as well. To capture the experimental data the convection scheme for volume fraction had to be of second order when simulating with automated mesh. This resulted in convergence issues when implementing the method on the water jacket. Instead first order convection scheme, which did not present as satisfying results as second order, had to be implemented. Simulations of the water jacket were performed with two different velocities, that were 10 m/s and 19 m/s, and different flow split ratios for the three outlets. Air with volume fraction 0.1 was injected at the inlet during the first 0.5 s followed by 0.5-1.1 s of further simulation without injecting air. Increased velocity resulted in increased flow through of gas, whereas no big difference could be seen between the different outlet flow split ratios. At two different zones lower pressure was found which resulted in gas holdup. To be able to validate the results from the water jacket, experiments would be necessary to perform in order to provide experimental data for comparison. Velocity profiles from the derived two-phase method resemble the velocity profiles from the one-phase simulation from Volvo, which indicated that the two-phase method did not affect the solution in a remarkable way. Granted that the zones of lower pressure and gas holdup normally coincides, the pressure field from the one-phase simulation could be directly studied, which would lower the computational costs significantly.
|
307 |
Experiments on vertical gas-liquid pipe flows using ultrafast X-ray tomographyBanowski, M., Beyer, M., Lucas, D., Hoppe, D., Barthel, F. 15 February 2017 (has links) (PDF)
For the qualification and validation of two-phase CFD-models for medium and large-scale industrial applications dedicated experiments providing data with high temporal and spatial resolution are required. Fluid dynamic parameter like gas volume fraction, bubble size distribution, velocity or turbulent kinetic energy should be measured locally. Considering the fact, that the used measurement techniques should not affect the flow characteristics, radiation based tomographic methods are the favourite candidate for such measurements. Here the recently developed ultrafast X-ray tomography, is applied to measure the local and temporal gas volume fraction distribution in a vertical pipe. To obtain the required frame rate a rotating X-ray source by a massless electron beam and a static detector ring are used.
Experiments on a vertical pipe are well suited for development and validation of closure models for two-phase flows. While vertical pipe flows are axially symmetrically, the boundary conditions are well defined. The evolution of the flow along the pipe can be investigated as well.
This report documents the experiments done for co-current upwards and downwards air-water and steam-water flows as well as for counter-current air-water flows. The details of the setup, measuring technique and data evaluation are given. The report also includes a discussion on selected results obtained and on uncertainties.
|
308 |
Etude expérimentale et modélisation des écoulements diphasiques et de la dispersion dans des fractures rugueuses réelles / Experimental study and modelilng of two-phase flow and dispersion in real rough-walled rock fracturesNowamooz, Ali 19 March 2010 (has links)
Les écoulements diphasiques en fracture se produisent dans de nombreuses applications industrielles et environnementales. Pour modéliser ces écoulements, il est important de connaître le rôle des caractéristiques géométriques des surfaces constituant les fractures.L’objectif de ce travail de thèse est d’étudier expérimentalement les écoulements diphasiques et la dispersion de traceurs dans des fractures réelles dont on connaît la cartographie des surfaces et d’en proposer une modélisation adéquate.L’écoulement diphasique inertiel a été modélisé à l’aide de la généralisation de la loi de Darcy couplée à l’approche de la fonction F. Le modèle proposé permet de prédire les perméabilités relatives et les saturations en fonction des débits des deux fluides avec deux paramètres d’ajustement.Les profils de concentration obtenus lors des expériences de dispersion ont été interprétés avec différents modèles afin d'évaluer leur capacité à décrire la dispersion dans les fractures et donc l’hétérogénéité de celles-ci. Les résultats montrent que le modèle stratifié, avec un seul paramètre estimé, donne des résultats satisfaisants et permet de quantifier l'hétérogénéité.Enfin, avec cinq paramètres estimés, à partir de la courbe de la concentration de traceur à la sortie des fractures, le modèle CTRW permet de décrire avec une bonne précision les profils de concentration de toutes les abscisses / The two-phase flows through fractures occur in many industrial and environmental processes.Modelling these flows needs understanding the role of geometric characteristics of the fractures surfaces. The objective of this thesis is to study experimentally the two-phase flow and the dispersion of tracers in fractures which the aperture map is known and propose a suitable model.The inertial two-phase flow model is based on the generalization of the single-phase full cubiclaw that accounts for non-Darcian effects by using the F function approach. On this approach,the presence of a second fluid is taken into account through a multiplier function introduced into the superficial velocity of each fluid. This model let us predict the relative permeability and the saturation as a function of the two fluid flows with two adjustment parameters.The concentration profiles obtained during dispersion experiments were interpreted with different models to study their ability to describe the dispersion in fractures and hence the heterogeneity of them. The results show that the classical convection-dispersion is not appropriate due to the heterogeneity of the fractures. On the other hand, the stratified model,with only one estimated parameter, gives satisfactory results and allows quantifying heterogeneity. Finally, with five estimated parameters, from the concentration curve at the outlet of the fractures, the CTRW model can describe the concentration profiles of all abscissas with good accuracy
|
309 |
Heat transfer and flow characteristics of sonic nozzleMadamadakala, Ganapathi Reddy January 1900 (has links)
Master of Science / Department of Mechanical and Nuclear Engineering / Steven Eckels / The current research presents the experimental investigation of heat transfer and flow characteristics of sonic multiphase flow in a converging-diverging nozzle. R134a and R123 are used in this study. Four different nozzle assemblies with two different throat sizes (2.43mm and 1.5 mm with 1° growth angle with the centerline of the nozzle in the diverging section) and two different heater lengths (200 mm and 125 mm) were tested. Each test section was an assembly of aluminum nozzle sections. The experimental facility design allowed controlling three variables: throat velocity, inlet temperature, back pressure saturation temperature.
The analysis used to find the average heat transfer of the fluid to each nozzle section. This was achieved by measuring the nozzle wall temperature and fluid pressure in a steady state condition. Two methods for finding the average heat flux in sonic nozzle were included in the data analysis: infinite contact resistance and zero contact resistance between nozzle sections.
The input variables ranges were 25 °C and 30 °C for inlet temperature and back pressure saturation temperatures, 1100-60,000 kg/m[superscript]2s for mass flux, and 1.4-700 kW/m[superscript]2 heat flux. The effect of the mass flux and heat flux on the average two-phase heat transfer coefficients was investigated. The flow quality, Mach number(M), and Nusselt number ratio ([phi]) were also calculated for each section of the nozzle.
As the fluid flowed through the nozzle, the pressure of the liquid dropped below the inlet saturation pressure of the liquid due to sonic expansion in the nozzle. This temperature drop was significantly lower in the case of R134a than R123. The results showed that the two-phase heat transfer coefficients were above of 30000 W/m^2 K in the first 75 mm of the nozzle, and they decreased along the nozzle. The Mach number profile appeared similar to the temperature profile, and the fluid was in the sonic region as long as temperature of the fluid dropped in the nozzle. Nusselt number ratios were compared with the Mach numbers and showed that the Nusselt number ratio were increased in the sonic region. The results showed that the length of the sonic region was larger for R123 than for R134a, and the Mach numbers were higher for R123. The Nusselt ratios of R123 were low compared to the R134a cases, and the trend in the Nusselt ratios was notably different as well.
|
310 |
[en] EXPERIMENTAL STUDY OF ELONGATED BUBBLES IN HORIZONTAL TWO-PHASE INTERMITTENT FLOW / [pt] ESTUDO EXPERIMENTAL DE BOLHAS ALONGADAS NO ESCOAMENTO BIFÁSICO HORIZONTAL INTERMITENTEWALACE ROSA LAURINDO 04 January 2013 (has links)
[pt] Ao longo deste trabalho, diversas características importantes para a dinâmica do escoamento intermitente foram analisadas experimentalmente. Todos os testes foram realizados numa tubulação com 0,0508 m de diâmetro interno, em configuração horizontal, utilizando água e ar e abrangendo uma região onde o escoamento passa por uma complexa transição do regime de bolha alongada, caracterizado por longas bolhas de gás localizadas próximo ao topo da tubulação, para o regime golfada, caracterizado por uma intensa quantidade de bolhas dispersas de gás e bolhas alongadas com formatos distorcidos e frentes mais distantes do topo da tubulação. Nesta região verifica-se uma notável carência de técnicas experimentais capazes de extrair informações quantitativas dos fenômenos característicos desses regimes. Através de um sistema de interruptores de feixe de infravermelho, o comportamento estatístico dos comprimentos dos pistões de líquido, das frequências de passagem dos pistões e do comprimento da bolha alongada puderam ser investigados. Uma extensa comparação dos dados com trabalhos disponíveis na literatura foi realizada, validando os resultados experimentais obtidos. Em conjunto, foi utilizada a técnica óptica, não intrusiva, conhecida como técnica de sombra (shadow technique), combinada com uma câmera digital de alta taxa de aquisição de imagens. Um procedimento inovador de processamento das imagens foi desenvolvido, permitindo a extração de informações quantitativas de regimes complexos com intensa quantidade de bolhas dispersas. Resultados importantes como o abaixamento do nariz da bolha como uma função da competição entre as forças de gravidade e de inércia puderam ser verificados e confirmados quantitativamente pela primeira vez. / [en] The present work experimentally studied several relevant dynamic characteristics of gas-liquid intermittent flow through a horizontal pipe. All tests were performed in a test section formed by 50.8 mm internal diameter pipe using air and water as working fluids. The tests covered a region where the flow undergoes a complex transition from elongated bubble flow regime, characterized by long gas bubbles located near the top of the pipe, to the slug flow regime, characterized by a large amount of dispersed gas bubbles in the liquid slug and elongated bubbles with distorted shapes and fronts displaced from the top of the pipe. In this region there is a notable lack of experimental techniques capable of extracting quantitative information of the characteristic dynamic phenomena involved. A set of infrared optical switches was employed to obtain statistical information on liquid piston lengths and frequency, as well as the elongated bubble lengths. An extensive comparison of the data obtained with works available in the literature was performed, validating the experimental results and the technique employed. Also, a high frame rate camera with back illumination was employed to capture images of the nose and tail of gas bubbles. An innovative procedure for image processing was developed, allowing for the extraction of original quantitative information on the complex shapes of the bubble and its relationship with flow variables. Relevant information such as the lowering of the bubble nose as a result of competing gravitational and inertial forces could be verified and confirmed quantitatively seemingly for the first time.
|
Page generated in 0.0337 seconds