• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 171
  • 45
  • 36
  • 15
  • 10
  • 8
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 343
  • 343
  • 146
  • 76
  • 71
  • 55
  • 54
  • 53
  • 52
  • 51
  • 51
  • 45
  • 42
  • 38
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Construction and Applications of Two-photon Micro-spectroscopy

Wang, Yi-Ming 03 July 2001 (has links)
In this thesis the effects of single photon and multi-photon excitation on protoplasts from Arabidopsis thaliana are compared. Time-lapsed micro-spectroscopy at high spatial resolution is employed to study the response of chloroplasts within the protoplasts from Arabidopsis thaliana. We have found that the fluorescence spectra of chloroplasts exhibits dramatic changes and the protoplasts are rapidly damaged under multi-photon excitation as a result of pulsed laser illumination. In contrast, single photon excitation of chloroplasts with cw laser is relatively inert to the vitality of the protoplasts. In addition to, we have built an ultrafast laser excited cryogenic micro-spectroscopy setup to study the photoluminescence of PPV thin film. We found that the spectrum of PPV¡¦s photoluminescence should shift toward longer wavelength and the non-radiative transition should be suppressed as a result of longer electron coherence length at low temperature.
112

Two-photon total internal reflection microscopy for imaging live cells with high background fluorescence

Ogden, Melinda Anne 04 May 2009 (has links)
Fluorescence microscopy allows for spatial and temporal resolution of systems which are inherently fluorescent or which can be selectively labeled with fluorescent molecules. Temporal resolution is crucial for imaging real time processes in living samples. A common problem in fluorescence microscopy of biological samples is autofluorescence, fluorescence inherent to the system, which interferes with detection of fluorescence of interest by decreasing the signal to noise ratio. Two current methods for improved imaging against autofluorescence are two-photon excitation and total internal reflection microscopy. Two-photon excitation occurs when two longer wavelength photons are absorbed quasi-simultaneously by a single fluorophore. For this to take place there must be a photon density on the order of 1030 photons/(cm2)(s), which is achieved through use of a femtosecond pulsed laser and a high magnification microscope objective. Two-photon excitation then only occurs at the focal spot, significantly reducing the focal volume and therefore background autofluorescence. The second method, total internal reflection, is based on evanescent wave excitation, which decreases exponentially in intensity away from the imaging surface. This allows for excitation of a thin (~200 nm) slice of a sample. Since only a narrow region of interest is excited, an optical slice can be imaged, decreasing excitation of out-of-focus autofluorescence, and increasing the signal to noise ratio. By coupling total internal reflection with two-photon excitation, an entire cell can be imaged while still maintaining the use of lower energy photons to irradiate the sample and achieve two-photon excitation along the length traveled by the evanescent wave. This system allows for more sensitive detection of fluorescence of interest from biological systems as a result of a significant decrease in excitation volume and therefore a decrease in autofluorescence signal. In the two-photon total internal reflection microscopy setup detailed in this work, an excitation area of 20 μm by 30 μm is achieved, and used to image FITC-stained actin filaments in BS-C-1 cells
113

Solvent and vibrational effects on nonlinear optical properties

Macák, Peter January 2002 (has links)
No description available.
114

Development and application of optical imaging techniques in diagnosing cardiovascular disease

Wang, Tianyi, 1982- 11 October 2012 (has links)
Atherosclerosis and specifically rupture of vulnerable plaques account for 23% of all deaths worldwide, far surpassing both infectious diseases and cancer. Plaque-based macrophages, often associated with lipid deposits, contribute to atherogenesis from initiation through progression, plaque rupture and ultimately, thrombosis. Therefore, the macrophage is an important early cellular marker related to vulnerability of atherosclerotic plaques. The objective of my research is to assess the ability of multiple optical imaging modalities to detect, and further characterize the distribution of macrophages (having taken up plasmonic gold nanoparticles as a contrast agent) and lipid deposits in atherosclerotic plaques. Tissue phantoms and macrophage cell cultures were used to investigate the capability of nanorose as an imaging contrast agent to target macrophages. Ex vivo aorta segments from a rabbit model of atherosclerosis after intravenous nanorose injection were imaged by optical coherence tomography (OCT), photothermal imaging (PTW) and two-photon luminescence microscopy (TPLM), respectively. OCT images depicted detailed surface structure of atherosclerotic plaques. PTW images identified nanorose-loaded macrophages (confirmed by co-registration of a TPLM image and corresponding RAM-11 stain on a histological section) associated with lipid deposits at multiple depths. TPLM images showed three-dimensional distribution of nanorose-loaded macrophages with a high spatial resolution. Imaging results suggest that superficial nanorose-loaded macrophages are distributed at shoulders on the upstream side of atherosclerotic plaques at the edges of lipid deposits. Combination of OCT with PTW or TPLM can simultaneously reveal plaque structure and composition, permitting assessment of plaque vulnerability during cardiovascular interventions. / text
115

Electron dynamics in nanomaterials for photovoltaic applications by time-resolved two-photon photoemission

Tritsch, John Russell 23 October 2013 (has links)
The impetus of unsustainable consumption coupled with major environmental concerns has renewed our society's investment in new energy production methods. Solar energy is the poster child of clean, renewable energy. Its favorable environmental attributes have greatly enhanced demand resulting in a spur of development and innovation. Photovoltaics, which convert light directly into usable electrical energy, have the potential to transform future energy production. The benefit of direct conversion is nearly maintenance free operation enabling deployment directly within urban centers. The greatest challenge for photovoltaics is competing economically with current energy production methods. Lowering the cost of photovoltaics, specifically through increasing the conversion efficiency of the active absorbing layer, may enable the invisible hand to bypass bureaucracy. To accomplish the ultimate goal of increased efficiency and lowered cost, it is essential to develop new material systems that provide enhanced output or lowered cost with respect to current technologies. However, new materials require new understanding of the physical principles governing device operation. It is my hope that elucidating the dynamics and charge transfer mechanisms in novel photovoltaic material systems will lead to enhanced design principles and improved material selection. Presented is the investigation of electron dynamics in two materials systems that show great promise as active absorbers for photovoltaic applications: inorganic semiconductor quantum dots and organic semiconductors. Common to both materials is the strong Coulomb interaction due to quantum confinement in the former and the low dielectric constant in the latter. The perceived enhancement in Coulomb interaction in quantum dots is believed to result in efficient multiexciton generation (MEG), while discretization of electronic states is proposed to slow hot carrier cooling. Time-resolved two-photon photoemission (TR2PPE) is utilized to directly map out the hot electron cooling and multiplication dynamics in PbSe quantum dots. Hot electron cooling is found to proceed on ultrafast time scales (< 2ps) and carrier multiplication proceeds through an inefficient bulk-like interband scattering. In organic semiconductors, the strong Coulomb interaction leads to bound electron-hole pairs called excitons. TR2PPE is used to monitor the separation of excitons at the model CuPc/C₆₀ interface. Exciton dissociation is determined to proceed through "hot" charge transfer states that set a fundamental time limit on charge separation. TR2PPE is used to investigate charge and energy transfer from organic semiconductors undergoing singlet fission, an analog of multiple exciton generation. The dynamic competition between one and two-electron transfer is determined for the tetracene/C₆₀ and tetracene/CuPc interfaces. These findings allow for the formulation of design principles for the successful harvesting of hot or multiple carriers for solar energy conversion. / text
116

Understanding cell death response to gold nanoparticle-mediated photothermal therapy in 2D and 3D in vitro tumor models for improving cancer therapy

Pattani, Varun Paresh 10 February 2014 (has links)
Gold nanoparticles, a class of plasmonic nanoparticle, have increasingly been explored as an imaging and therapeutic agent to treat cancer due to their characteristic surface plasmon resonance phenomenon and penchant for tumor accumulation. Photothermal therapy has been shown as a promising cancer treatment by delivering heat specifically to the tumor site via gold nanoparticles. In this study, we demonstrate that gold nanorod (GNR)-mediated photothermal therapy can be more effective through the understanding of cell death mechanisms. By targeting GNRs to various cellular localizations, we explored the association of GNR localization with cell death pathway response to photothermal therapy. Furthermore, we compared the 2D monolayer experiments with 3D in vitro tumor models, multicellular tumor spheroids (MCTS), to mimic the structure of in vivo tumors. With MCTS, we evaluated the cell death response with GNRs distributed only on the periphery, as seen in typical in vivo studies, and distributed evenly throughout the tumor. We demonstrated that GNR localization influences the cell death response to photothermal therapy by showing the power threshold necessary to induce significant apoptotic and necrotic increases was lower for internalized GNRs than membrane-bound GNRs. Furthermore, apoptosis was found to increase with increasing laser power until the necrotic threshold and decreased above it, as necrosis became the dominant cell death pathway response. A similar trend was revealed with the 3D MCTS; however, the overall cell death percentages were lower, most likely due to the upregulated cell repair response and varied GNR distributions due to the presence of cell-cell and cell-matrix interactions. Furthermore, the uniformly distributed GNRs induced more apoptosis and necrosis than GNRs located in the MCTS periphery. In conclusion, we quantitatively analyzed the cell death pathway response to GNR-mediated photothermal therapy to establish that it has some dependence on GNR localization and distribution to gain a more thorough understanding of this response for photothermal therapy optimization. / text
117

High-resolution measurement of dissolved oxygen concentration in vivo using two-photon microscopy

Estrada, Arnold Delfino 14 June 2011 (has links)
Because oxygen is vital to the metabolic processes of all eukaryotic cells, a detailed understanding of its transport and consumption is of great interest to researchers. Existing methods of quantifying oxygen delivery and consumption are non-ideal for in vivo measurements. They either lack the three-dimensional spatial resolution needed, are invasive and disturb the local physiology, or they rely on hemoglobin spectroscopy, which is not a direct measure of the oxygen available to cells. Consequently, many fundamental physiology research questions remain unanswered. This dissertation presents our development of a novel in vivo oxygen measurement technique that seeks to address the shortcomings of existing methods. Specifically, we have combined two-photon microscopy with phosphorescence quenching oximetry to produce a system that is capable of performing depth-resolved, high-resolution dissolved oxygen concentration (PO2) measurements. Furthermore, the new technique allows for simultaneous visualization of the micro-vasculature and measurement of blood velocity. We demonstrate the technique by quantifying PO2 in rodent cortical vasculature under normal and pathophysiologic conditions. We also demonstrate the technique’s usefulness in examining the changes in oxygen transport that result from acute focal ischemia in rodent animal models. / text
118

Ex vivo imaging immune cell interactions in T cell vaccine-induced immunity and CD8+CD25+ T regulatory cell-mediated immune suppression

2013 October 1900 (has links)
The ultimate goal of antitumor vaccines is to develop memory CD8+ cytotoxic T lymphocytes (CTLs), which are critical mediators of antitumor immunity. Previous work in our lab demonstrated that the ovalbumin (OVA)-specific CD4+ T cell-based (OVA-TEXO) vaccine generated using OVA-pulsed dendritic cell (DCOVA)-released exosomes (EXOOVA) stimulates CTL responses via interleukin (IL)-2 and costimulatory CD80 signaling. To assess the potential involvement of other costimulatory pathways and to define the key constituent of costimulation for memory CTL development, we first immunized wild-type (WT) C57BL/6 and gene-knockout mice with WT CD4+ OVA-TEXO cells or OVA-TEXO cells with various molecular deficiencies. We then assessed OVA-specific primary and recall CTL responses using PE-H-2Kb/OVA257–264 tetramer and FITC-anti-CD8 antibody staining by flow cytometry. We also examined antitumor immunity against the OVA-expressing B16 melanoma cell line BL6-10OVA. We demonstrate that CD4+ OVA-TEXO cells form immunological synapses with cognate CD8+ T cells in vitro. By assessment of the pattern of ex vivo interactions between OTI CD8+ T cells and OVA-TEXO or (Kb-/-)TEXO cells lacking peptide/major histocompatibitity complex (pMHC)-I expression, we provide the first visible evidence on the critical role of exosomal pMHC-I in targeting OVA-TEXO to cognate CD8+ T cells using two-photon microscopy. By assessing primary and recall CTL responses in mice immunized with OVA-TEXO cells or with OVA-TEXO cells lacking the costimulatory molecules CD40L, 4-1BBL or OX40L, we demonstrated that these costimulatory signals are dispensable for CTL priming by OVA-TEXO cells. Interestingly, CD40L, but not 4-1BBL or OX40L, plays a crucial role in the development of functional memory CTLs against BL6-10OVA tumors. Overall, this work suggests that a novel CD4+ T cell-based vaccine that is capable of stimulating long-term functional CTL memory via CD40L signaling may represent a novel, efficient approach to antitumor vaccination. Breast cancer is the most common cancer among women in the western world. Approximately 20-30% of invasive breast carcinomas are proto-oncogene human epidermal growth factor receptor (HER)-2 positive and associated with increased metastatic potential and poor prognosis. The survival benefit of anti-HER2 driven therapies demonstrated in clinical trials indicates that HER2 is one of the most promising molecules for targeted therapy to date. Above results prompt us to assess whether CD4+ T-cell-based vaccine can stimulate efficient HER2-specific CD8+ CTL responses and antitumor immunity in transgenic mice with HER2-specific self-immune tolerance. We prepared HER2-specific HER2-TEXO using ConA-stimulated CD4+ T cells with uptake of exosomes released from HER2-expressing AdVHER2-transfected DCs. We found that HER2-TEXO vaccine is capable of inducing HER2-specific CTL responses and protective immunity against transgene HLA-A2/HER2-expressing B16 melanoma BL6-10HLA-A2/HER2 in 2/8 double transgenic HLA-A2/HER2 mice with HER2-specific self-immune tolerance. The remaining 6/8 mice had significantly prolonged survival. Therefore, the novel T cell-based HER2-TEXO vaccine may provide a new therapeutic alternative for women with HER2+ breast cancer. In contrast to CD4+CD25+ regulatory T cells (Tregs), mechanisms of CD8+CD25+ Treg-mediated immunosuppression are not well understood. In this study, we purified polyclonal CD8+CD25+ Tregs from C57BL/6 mouse splenocytes and expanded them in culture medium containing CD3/CD28 microbeads. By using these amplified CD8+CD25+ Tregs, we demonstrated that CD8+CD25+ Tregs inhibit naive CD4+ T-cell proliferation and induce naive T-cell anergy by up-regulating T-cell anergy-associated early growth response 2 (EGR2), and by decreasing T-cell proliferation and IL-2-secretion upon stimulation. They also impact the expression of perforin on effector CTLs and directly induce perforin-mediated CTL apoptosis. CD8+CD25+ Tregs, when pulsed with OVA323-339 peptide, exert an enhanced inhibition. Interestingly, CD8+CD25+ Tregs, when pulsed with myelin oligodendrocyte glycoprotein (MOG)35-55 peptide, become capable of inhibiting MOG35-55-induced experimental autoimmune encephalomyelitis (EAE). Two-photon microscopic observations suggest that OVA323-339-pulsed (armed) CD8+CD25+ Tregs reduce the interactions between DCs and cognate CD4+ T cells ex vivo by increasing velocities of T cells in mouse lymph nodes. Therefore, redirecting antigen-specificity to nonspecific CD8+CD25+ Tregs can be achieved for enhanced immunosuppression through their arming with the antigen-specific pMHC-II complexes. This approach may have great impact on improvement of endogenous polyclonal Treg-mediated immunotherapy for autoimmune diseases. Taken together, our studies demonstrate that nonspecific polyclonal CD4+ T cells and CD8+CD25+ Tregs, when armed with HER2 and MOG antigen-specific pMHC-I and -II complexes, become capable of stimulating enhanced HER2-specific CTL responses and antitumor immunity in double transgenic HLA-A2/HER2 mice and inducing enhanced MOG-specific immunosuppression in MOG-induced EAE mice, respectively. Therefore, redirecting antigen specificity to nonspecific CD4+ T and CD8+CD25+ Tregs by pMHC complex arming may have great impact in development of novel T cell-based vaccines for treatment of cancer and autoimmune diseases.
119

Εφαρμογές της διφωτονικής απορρόφησης

Γιασεμίδης, Δημήτριος 18 March 2009 (has links)
Στην εργασία αυτή θα ασχοληθούμε με τη διφωτονική απορρόφηση και τις εφαρμογές της. Θα πρέπει πρώτα να πούμε δύο λόγια γι’αυτήν, να εξηγήσουμε περί τίνος πρόκειται και γι’αυτό θα αρχίσουμε από τα βασικά. Όταν ηλεκτρομαγνητική ακτινοβολία κυκλικής συχνότητας ω0 προσπίπτει σε ένα υλικό μέσο, τα άτομά του λειτουργούν σαν ταλαντωτές, με την έννοια πως ταλαντώνονται στη συχνότητα της ακτινοβολίας, απορροφώντας την και επανεκπέμποντάς την. Παρομοιάζοντας έναν τέτοιο ταλαντωτή με σύστημα μάζας-ελατηρίου, το ρόλο της μάζας τον παίζει το ηλεκτρόνιο (για λόγους απλότητας θεωρούμε πως το άτομο έχει μόνο ένα) και το ρόλο του ελατηρίου οι δυνάμεις έλξης ηλεκτρονίου-πυρήνα. Το «ελατήριο» στη μιά του άκρη είναι στερεωμένο στον πυρήνα, που λόγο μεγάλης μάζας (σε σύγκριση με το ηλεκτρόνιο) θεωρείται ακίνητος. Όταν η ένταση του Η/Μ πεδίου είναι μικρή, το ηλεκτρόνιο δεν απομακρύνεται πολύ από τη θέση ισορροπίας του και ο ταλαντωτής μας μπορεί να θεωρηθεί αρμονικός, και έχουμε γραμμικά φαινόμενα. / -
120

From Growth to Electronic Structure of Dipolar Organic Semiconductors on Coinage Metal Surfaces

Ilyas, Nahid January 2014 (has links)
In this thesis, I present a comprehensive study of the interfacial electronic structure and thin film growth of two types of dipolar organic semiconductors on noble metals by employing a surface science approach, which underlines the critical role of surface electronic states in determining the interfacial electronic structure and self-assembly of organic semiconductors. I show that the electronic structure at organic/metal interfaces is complex and depends on important factors such as molecular adsorption configuration, surface/molecule coupling strength, reactivity of the substrate, molecular electrostatics, and local film structure. I demonstrate the fundamental capability of the image potential states and resonances in probing the local film environment, especially in systems consisting of inhomogeneous film structure. I also show that the presence of adsorbates on a surface allows one to investigate quantum mechanical interference effects otherwise not accessible on the bare surface. The dipolar organic semiconductors studied here are vanadyl naphthalocyanine (VONc) and chloroboron-subphthalocyanine (ClB-SubPc). The single crystals of gold and copper with hexagonal surface symmetry (111) were used to investigate the interfacial properties of VONc and ClB-SubPc, respectively. The fundamental understanding of self-assembly of large π-conjugated organic semiconductors on metals is a crucial step in controlling fabrication of supramolecular structures. Here, I provide a first step in this direction with a detailed and quantitative analysis of molecular nearest-neighbor distances that unravels the fundamental intermolecular interactions of organic semiconductors on transition metal surfaces. I additionally investigated the interfacial electronic structure of these organic semiconductors to examine the relation between molecular adsorption orientation and charge transfer across the interface.

Page generated in 0.0488 seconds