• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 17
  • 1
  • Tagged with
  • 39
  • 39
  • 27
  • 27
  • 16
  • 16
  • 16
  • 16
  • 16
  • 15
  • 14
  • 11
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Inteligentní manažer hry Fantasy Premier League / Intelligent Manager of Fantasy Premier League Game

Vasilišin, Maroš January 2020 (has links)
Hra Fantasy Premier League poskytuje miliónom hráčov po celom svete možnosť stať sa na chvíľu manažérom svojho vlastného klubu. Výsledky a bodové ohodnotenie v hre závisia na správnom predvídaní, ako sa budú hráči chovať v skutočných futbalových zápasoch. Ak by pri tomto rozhodovaní pomáhal software na predikciu a analýzu budúcich výkonov hráčov, výsledky v hre sa môžu rapídne zlepšiť. Táto diplomová práca sa zaoberá návrhom a implementáciou predikčného modelu, ktorý využíva neurónové siete na predikcie časových radov počas celej sezóny v hre. Boli použité metódy na spracovanie dát o hráčoch a kluboch za posledné 4 sezóny. Výkonnosť a presnosť predikčných metód boli testované na dátach z poslednej sezóny Premier League a predikcie algoritmu sa vo väčšine prípadov blížili realite. Ak by sa užívateľ držal predikčného modelu v hre stopercentne, získal by väčší počet bodov ako bežný hráč, ktorý žiadny predikčný model nepoužíva.
12

Segmentace biologických vzorků v obrazech z kryo-elektronového mikroskopu s využitím metod strojového učení / Segmentation of biological samples in cryo-electron microscopy images using machine learning methods

Sokol, Norbert January 2021 (has links)
Zobrazovanie pomocou kryo-elektrónovej mikroskopie má svoje nezastúpiteľné miesto v analýze viacerých biologických štruktúr. Lokalizácia buniek kultivovaných na mriežke a ich segmentácia voči pozadiu alebo kontaminácii je základom. Spolu s vývojom viacerých metód hlbokého učenia sa podstatne zvýšila úspešnosť úloh sémantickej segmentácie. V tejto práci vyvinieme hlbokú konvolučnú neurónovú sieť pre úlohu sémantickej segmentácie buniek kultivovaných na mriežke. Dátový súbor pre túto prácu bol vytvorený pomocou dual-beam kryo-elektónového mikroskopu vyvinutého spoločnosťou Thermo Fisher Scientific Brno.
13

Nejistota modelů hlubokého učení při analýze lékařských obrazových dat / Deep Learning Model Uncertainty in Medical Image Analysis

Drevický, Dušan January 2019 (has links)
Táto práca sa zaoberá určením neistoty v predikciách modelov hlbokého učenia. Aj keď sa týmto modelom darí dosahovať vynikajúce výsledky v mnohých oblastiach počítačového videnia, ich výstupy sú väčšinou deterministické a neposkytujú mnoho informácií o tom, ako si je model istý svojou predpoveďou. To je obzvlášť dôležité pri analýze lekárskych obrazových dát, kde môžu mať omyly vysokú cenu a schopnosť detekovať neisté predikcie by umožnila dohliadajúcemu lekárovi spracovať relevantné prípady manuálne. V tejto práci aplikujem niekoľko rôznych metrík vyvinutých v nedávnom výskume pre určenie neistoty na modely hlbokého učenia natrénované pre lokalizáciu cefalometrických landmarkov. Následne ich vyhodnotím a porovnávam v sade experimentov, ktorých úlohou je určiť, nakoľko jednotlivé metriky poskytujú užitočnú informáciu o tom, ako si je model istý svojou predpoveďou.
14

Analýza anomálií v uživatelském chování / User Behavior Anomaly Detection

Petrovič, Lukáš January 2019 (has links)
The aim of this work is to create an application that allows modeling of user behavior and subsequent search for anomalies in this behavior. An application entry is a list of actions the user has executed on his workstation. From this information and from information about the events that occurred on this device the behavioral model for a specific time is created. Subsequently, this model is compared to models in different time periods or with other users' models. From this comparison, we can get additional information about user behavior and also detect anomalous behavior. The information about the anomalies is useful to build security software that prevents valuable data from being stolen (from the corporate enviroment).
15

Sledování pohybu míče ve videu / Ball Tracking in Sports Video

Motlík, Matúš January 2019 (has links)
This master's thesis deals with automatic detection and tracking of a soccer ball in sports videos. Based on the introduced techniques focusing on tracking of small objects in high-resolution videos, effective convolutional neural networks are designed and used by a modified version of tracking algorithm SORT for automatic object detection. A set of experiments with the processing of images in different resolutions and with various frequencies of detection extraction is carried out in order to examine the trade-off between processing speed and tracking accuracy. The obtained results of experiments are presented and used to form proposals for future work, which could lead to improvements in tracking accuracy while maintaining reasonable processing speed.
16

Analýza GPON rámců s využitím strojového učení / Analysis of GPON frames using machine learning

Tomašov, Adrián January 2020 (has links)
Táto práca sa zameriava na analýzu vybraných častí GPON rámca pomocou algoritmov strojového učenia implementovaných pomocou knižnice TensorFlow. Vzhľadom na to, že GPON protokol je definovaný ako sada odporúčaní, implementácia naprieč spoločnosťami sa môže líšiť od navrhnutého protokolu. Preto analýza pomocou zásobníkového automatu nie je dostatočná. Hlavnou myšlienkou je vytvoriť systém modelov za použitia knižnice TensorFlow v Python3, ktoré sú schopné detekovať abnormality v komunikácií. Tieto modely používajú viaceré architektúry neuronových sietí (napr. LSTM, autoencoder) a zameriavajú sa na rôzne typy analýzy. Tento systém sa naučí na vzorovej vzorke dát a upozorní na nájdené odlišnosti v novozachytenej komunikácií. Výstupom systému odhad podobnosti aktuálnej komunikácie v porovnaní so vzorovou komunikáciou.
17

Odstraňování šumu pomocí neuronových sítí s cyklickou konzistencí / Speech Enhancement with Cycle-Consistent Neural Networks

Karlík, Pavol January 2020 (has links)
Hlboké neurónové siete sa bežne používajú v oblasti odstraňovania šumu. Trénovací proces neurónovej siete je možné rožšíriť využitím druhej neurónovej siete, ktorej cieľom je vložiť šum do čistej rečovej nahrávky. Tieto dve siete sa môžu spolu využiť k rekonštrukcii pôvodných čistých a zašumených nahrávok. Táto práca skúma efektivitu tejto techniky, zvanej cyklická konzistencia. Cyklická konzistencia zlepšuje robustnosť neurónovej siete bez toho, aby sa daná sieť akokoľvek modifikovala, nakoľko vystavuje sieť na odstraňovanie šumu rôznorodejšiemu množstvu zašumených dát. Avšak, táto technika vyžaduje trénovacie dáta skladajúce sa z párov vstupných a referenčných nahrávok. Tieto dáta niesu vždy dostupné. Na trénovanie modelov s nepárovanými dátami využívame generatívne neurónové siete s cyklickou konzistenciou. V tejto práci sme vykonali veľké množstvo experimentov s modelmi trénovanými na párovaných a nepárovaných dátach. Naše výsledky ukazujú, že využitie cyklickej konzistencie výrazne zlepšuje výkonnosť modelov.
18

Machine learning models for quantifying phenotypic signatures of cancer cells based on transcriptomic and epigenomic data / Machine learning models for quantifying phenotypic signatures of cancer cells based on transcriptomic and epigenomic data

Koban, Martin January 2020 (has links)
S rozvojom techník pre efektívnu akvizíciu genomických dát sa jednou z kľúčových vedeckých výziev stala interpretácia výsledkov týchto experimentov v zmysluplnom biologickom kontexte. Táto práca sa zameriava na využitie informácií ukrytých v dobre charakterizovaných transkriptomických a epigenomických dátach z verejne dostupných zdrojov pre účely takejto interpretácie. Najskôr je vytvorený integrovaný súbor dát generovaných metódami DNase-seq a ATAC-seq, ktoré kvantifikujú chromatínovú dostupnosť. Tieto údaje sú doplnené verejne dostupnými výsledkami techniky RNA-seq pre kvantitatívne hodnotenie génovej expresie a vhodne predspracované pre ďalšiu analýzu. Pripravené dáta sú následne použité na trénovanie modelov strojového učenia (klasifikátorov) s dvomi základnými cieľmi. Po prvé za účelom augmentácie metadát prislúchajúcich k jednotlivým biologickým vzorkám v trénovacom dátovom súbore pomocou predikcie nedefinovaných anotácií. Po druhé pre anotáciu zle charakterizovaných testovacích dát (nepoužitých v trénovacej fáze) za účelom overenia generalizačnej schopnosti zostavených modelov. Dosiahnuté výsledky ukazujú, že natrénované klasifikátory sú schopné zachytiť biologicky relevantné informácie, zatiaľ čo vplyv technických artefaktov je minimalizovaný. Navrhnutý prístup je preto schopný prispieť k lepšiemu pochopeniu komplexných transkriptomických a epigenomických dát, predovšetkým v oblasti onkologického výskumu.
19

Analýza zpětně rozptýleného DDoS provozu v datech o síťových tocích / Analysis of DDoS Backscatter Traffic in Network Flow Data

Marušiak, Martin January 2021 (has links)
This work focuses on detection of denial of service (DoS) attacks which utilize random spoofing of source IP address in attack packets. These types of attacks lead to generation of side effect in a form of backscatter that can be used to identify victims of such attacks. Backscatter analysis has so far been limited to unused address space ranges referred to as network telescopes. This work therefore proposes a new method of DoS attack detection via backscatter outside of network telescope environment where legitimate user traffic is also present. Furthermore proposed approach uses only abstracted traffic in a form of network flows. Presented method was implemented as part of NEMEA system and tested on real flow data capture provided by CESNET.
20

Generativní adversarialní neuronové sítě využity na ochranu soukromí při biometrické autentifikaci a identifikaci / Generative Adversarial Networks Applied for Privacy Preservation in Bio-Metric-Based Authentication and Identification

Mjachky, Ľuboš January 2021 (has links)
Systémy založené na biometrickej autentizácii sa stávajú súčasťou nášho každodenného bytia. Tieto systémy však nedovoľujú používateľom priamo alebo nepriamo meniť spôsob, akým sa k ich dátam pristupuje a ako sa s nimi bude zaobchádzať ďalej v budúcnosti. Dôsledkom tohto môžu vyplynúť riziká spojené s uniknutím identity jedinca. Táto práca sa zaoberá návrhom systému, ktorý zachováva privátnosť a zároveň umožňuje autentizáciu na základe biometrických čŕt používateľov, a to za pomoci generatívnej neurónovej siete (GAN). V práci sa konkrétne uvažuje o tom, že GAN je použitá na transformáciu obrázkov tvárí napríklad na obrázky kvetov. Autentizačný systém sídliaci na serveri je v konečnom dôsledku učený rozlišovať používateľov podľa obrázkov kvetov a nie tvárí. Na základe vykonaných experimentov môžeme potvrdiť, že navrhovaná metóda je robustná voči útokom, pričom stále vykazuje kvalitatívne požiadavky kladené na štandardný autentizačný systém.

Page generated in 0.0343 seconds