• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 17
  • 1
  • Tagged with
  • 39
  • 39
  • 27
  • 27
  • 16
  • 16
  • 16
  • 16
  • 16
  • 15
  • 14
  • 11
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Počítačová analýza medicínských obrazových dat / Computer analysis of medical image data

Krajčír, Róbert January 2014 (has links)
This work deals with medical image analysis, using variety of statisic and numeric methods implemented in Eclipse and Rapidminer environments in Java programming language. Sets of images (slices), which are used here, are the results of magnetic resonance brain examination of several subejcts. Segments in this 3D image are analyzed and some local features are computed, based on which data sets for use in training algorythms are generated. The ability of successful identification of healthy or unhealthy tissues is then practically tested using available data.
22

Bioinformatický nástroj pro predikci rozpustnosti proteinů / Bioinformatics Tool for Prediction of Protein Solubility

Hronský, Patrik January 2016 (has links)
This master's thesis addresses the solubility of recombinant proteins and its prediction. It describes the subject of protein synthesis, as well as the process of recombinant protein creation. Recombinant protein synthesis is of great importance for example to pharmacologic industry. This synthesis is not a simple task and it does not always produce viable proteins. Protein solubility is an important factor, determining the viability of the resulting proteins. It is of course favourable for companies, that take part in recombinant protein synthesis, to focus their effort and their resources on proteins, that will be viable in the end. In this regard, bioinformatics is of great help, as it is capable, with the help of machine learning, of predicting the solubility of proteins, for example based on their sequences. This thesis introduces the reader to the basic principles of machine learning and presents several machine learning methods, used in the field of protein solubility prediction. It deals with the definition of a dataset, which is later used to test selected predictors, as well as to train the ensemble predictor, which is the main focus of this thesis. It also focuses on several specific protein solubility predictors and explains the basic principles upon which they are built, as well as the results of their testing. In the end, it presents the ensemble predictor of protein solubility.
23

Segmentace lézí roztroušené sklerózy pomocí hlubokých neuronových sítí / Segmentation of multiple sclerosis lesions using deep neural networks

Sasko, Dominik January 2021 (has links)
Hlavným zámerom tejto diplomovej práce bola automatická segmentácia lézií sklerózy multiplex na snímkoch MRI. V rámci práce boli otestované najnovšie metódy segmentácie s využitím hlbokých neurónových sietí a porovnané prístupy inicializácie váh sietí pomocou preneseného učenia (transfer learning) a samoriadeného učenia (self-supervised learning). Samotný problém automatickej segmentácie lézií sklerózy multiplex je veľmi náročný, a to primárne kvôli vysokej nevyváženosti datasetu (skeny mozgov zvyčajne obsahujú len malé množstvo poškodeného tkaniva). Ďalšou výzvou je manuálna anotácia týchto lézií, nakoľko dvaja rozdielni doktori môžu označiť iné časti mozgu ako poškodené a hodnota Dice Coefficient týchto anotácií je približne 0,86. Možnosť zjednodušenia procesu anotovania lézií automatizáciou by mohlo zlepšiť výpočet množstva lézií, čo by mohlo viesť k zlepšeniu diagnostiky individuálnych pacientov. Našim cieľom bolo navrhnutie dvoch techník využívajúcich transfer learning na predtrénovanie váh, ktoré by neskôr mohli zlepšiť výsledky terajších segmentačných modelov. Teoretická časť opisuje rozdelenie umelej inteligencie, strojového učenia a hlbokých neurónových sietí a ich využitie pri segmentácii obrazu. Následne je popísaná skleróza multiplex, jej typy, symptómy, diagnostika a liečba. Praktická časť začína predspracovaním dát. Najprv boli skeny mozgu upravené na rovnaké rozlíšenie s rovnakou veľkosťou voxelu. Dôvodom tejto úpravy bolo využitie troch odlišných datasetov, v ktorých boli skeny vytvárané rozličnými prístrojmi od rôznych výrobcov. Jeden dataset taktiež obsahoval lebku, a tak bolo nutné jej odstránenie pomocou nástroju FSL pre ponechanie samotného mozgu pacienta. Využívali sme 3D skeny (FLAIR, T1 a T2 modality), ktoré boli postupne rozdelené na individuálne 2D rezy a použité na vstup neurónovej siete s enkodér-dekodér architektúrou. Dataset na trénovanie obsahoval 6720 rezov s rozlíšením 192 x 192 pixelov (po odstránení rezov, ktorých maska neobsahovala žiadnu hodnotu). Využitá loss funkcia bola Combo loss (kombinácia Dice Loss s upravenou Cross-Entropy). Prvá metóda sa zameriavala na využitie predtrénovaných váh z ImageNet datasetu na enkodér U-Net architektúry so zamknutými váhami enkodéra, resp. bez zamknutia a následného porovnania s náhodnou inicializáciou váh. V tomto prípade sme použili len FLAIR modalitu. Transfer learning dokázalo zvýšiť sledovanú metriku z hodnoty približne 0,4 na 0,6. Rozdiel medzi zamknutými a nezamknutými váhami enkodéru sa pohyboval okolo 0,02. Druhá navrhnutá technika používala self-supervised kontext enkodér s Generative Adversarial Networks (GAN) na predtrénovanie váh. Táto sieť využívala všetky tri spomenuté modality aj s prázdnymi rezmi masiek (spolu 23040 obrázkov). Úlohou GAN siete bolo dotvoriť sken mozgu, ktorý bol prekrytý čiernou maskou v tvare šachovnice. Takto naučené váhy boli následne načítané do enkodéru na aplikáciu na náš segmentačný problém. Tento experiment nevykazoval lepšie výsledky, s hodnotou DSC 0,29 a 0,09 (nezamknuté a zamknuté váhy enkodéru). Prudké zníženie metriky mohlo byť spôsobené použitím predtrénovaných váh na vzdialených problémoch (segmentácia a self-supervised kontext enkodér), ako aj zložitosť úlohy kvôli nevyváženému datasetu.
24

Klasifikátor pro sémantické vzory užívání anglických sloves / Classifier for semantic patterns of English verbs

Kríž, Vincent January 2012 (has links)
The goal of the diploma thesis is to design, implement and evaluate classifiers for automatic classification of semantic patterns of English verbs according to a pattern lexicon that draws on the Corpus Pattern Analysis. We use a pilot collection of 30 sample English verbs as training and test data sets. We employ standard methods of machine learning. In our experiments we use decision trees, k-nearest neighbourghs (kNN), support vector machines (SVM) and Adaboost algorithms. Among other things we concentrate on feature design and selection. We experiment with both morpho-syntactic and semantic features. Our results show that the morpho-syntactic features are the most important for statistically-driven semantic disambiguation. Nevertheless, for some verbs the use of semantic features plays an important role.
25

Quoting behaviour of a market-maker under different exchange fee structures / Quoting behaviour of a market-maker under different exchange fee structures

Kiseľ, Rastislav January 2018 (has links)
During the last few years, market micro-structure research has been active in analysing the dependence of market efficiency on different market character­ istics. Make-take fees are one of those topics as they might modify the incen­ tives for participating agents, e.g. broker-dealers or market-makers. In this thesis, we propose a Hawkes process-based model that captures statistical differences arising from different fee regimes and we estimate the differences on limit order book data. We then use these estimates in an attempt to measure the execution quality from the perspective of a market-maker. We appropriate existing theoretical market frameworks, however, for the pur­ pose of hireling optimal market-making policies we apply a novel method of deep reinforcement learning. Our results suggest, firstly, that maker-taker exchanges provide better liquidity to the markets, and secondly, that deep reinforcement learning methods may be successfully applied to the domain of optimal market-making. JEL Classification Keywords Author's e-mail Supervisor's e-mail C32, C45, C61, C63 make-take fees, Hawkes process, limit order book, market-making, deep reinforcement learn­ ing kiselrastislavSgmail.com barunik@f sv.cuni.cz
26

Hluboké neuronové sítě pro rozpoznání tváří ve videu / Deep Learning for Facial Recognition in Video

Mihalčin, Tomáš January 2018 (has links)
This diploma thesis focuses on a face recognition from a video, specifically how to aggregate feature vectors into a single discriminatory vector also called a template. It examines the issue of the extremely angled faces with respect to the accuracy of the verification. Also compares the relationship between templates made from vectors extracted from video frames and vectors from photos. Suggested hypothesis is tested by two deep convolutional neural networks, namely the well-known VGG-16 network model and a model called Fingera provided by company Innovatrics. Several experiments were carried out in the course of the work and the results of which confirm the success of proposed technique. As an accuracy metric was chosen the ROC curve. For work with neural networks was used framework Caffe.
27

Konvoluční neuronové sítě / Convolutional Neural Networks

Lietavcová, Zuzana January 2018 (has links)
This thesis deals with convolutional neural networks. It is a kind of deep neural networks that are presently widely used mainly for image recognition and natural language processing. The thesis describes specifics of convolutional neural networks in comparison with traditional neural networks and is focused on inner computations in the process of learning. Convolutional neural networks typically consist of a different types of layers of neurons and the core part of this thesis is to demonstrate computations of individual types of layers. Learning demonstrating program of a simple convolutional network was designed and implemented using own implementation of neural network. Validity of the implementation was tested by training models for solving a classification task. Experiments with different types of architectures were conducted and their performance was compared.
28

Detekce a hodnocení zkreslených snímků v obrazových sekvencích / Detection and evaluation of distorted frames in retinal image data

Vašíčková, Zuzana January 2020 (has links)
Diplomová práca sa zaoberá detekciou a hodnotením skreslených snímok v retinálnych obrazových dátach. Teoretická časť obsahuje stručné zhrnutie anatómie oka a metód hodnotenia kvality obrazov všeobecne, ako aj konkrétne hodnotenie retinálnych obrazov. Praktická časť bola vypracovaná v programovacom jazyku Python. Obsahuje predspracovanie dostupných retinálnych obrazov za účelom vytvorenia vhodného datasetu. Ďalej je navrhnutá metóda hodnotenia troch typov šumu v skreslených retinálnych obrazoch, presnejšie pomocou Inception-ResNet-v2 modelu. Táto metóda nebola prijateľná a navrhnutá bola teda iná metóda pozostávajúca z dvoch krokov - klasifikácie typu šumu a následného hodnotenia úrovne daného šumu. Pre klasifikáciu typu šumu bolo využité filtrované Fourierove spektrum a na hodnotenie obrazu boli využité príznaky extrahované pomocou ResNet50, ktoré vstupovali do regresného modelu. Táto metóda bola ďalej rozšírená ešte o krok detekcie zašumených snímok v retinálnych sekvenciách.
29

Trénovatelná segmentace obrazu s použitím hlubokých neuronových sítí / Trainable image segmentation using deep neural networks

Majtán, Martin January 2016 (has links)
Diploma thesis is aimed to trainable image segmentation using deep neural networks. In the paper is explained the principle of digital image processing and image segmentation. In the paper is also explained the principle of artificial neural network, model of artificial neuron, training and activation of artificial neural network. In practical part of the paper is created an algorithm of sliding window to generate sub-images from image from magnetic rezonance. Generated sub-images are used to train, test and validate of the model of neural network. In practical part of the paper si created the model of the artificial neural network, which is used to trainable image segmentation. Model of the neural network is created using the Deeplearning4j library and it is optimized to parallel training using Spark library.
30

Potlačení DoS útoků s využitím strojového učení / Mitigation of DoS Attacks Using Machine Learning

Goldschmidt, Patrik January 2021 (has links)
Útoky typu odoprenia služby (DDoS) sú v dnešných počítačových sieťach stále frekventovanejším bezpečnostným incidentom. Táto práca sa zameriava na detekciu týchto útokov a poskytnutie relevantných informácii za účelom ich mitigácie v reálnom čase. Spomínaná funkcionalita je dosiahnutá s využitím techník prúdového dolovania z dát a strojového učenia. Výsledkom práce je sada nástrojov zastrešujúca celý proces strojového učenia - od vlastnej extrakcie príznakov cez predspracovanie dát až po export natrénovaného modelu pripraveného na nasadenie v produkcii. Experimentálne výsledky vyhodnotené na viacerých reálnych a syntetických dátových sadách poukazujú na presnosť systému väčšiu ako 99% s možnosťou spoľahlivej detekcie prebiehajúceho útoku do 4 sekúnd od jeho začiatku.

Page generated in 0.0239 seconds