• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 12
  • 7
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 65
  • 65
  • 31
  • 16
  • 14
  • 14
  • 14
  • 11
  • 11
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

AIP4 is involved in the control of TSG101 stability

Huang, Hsiao-yu 13 September 2012 (has links)
Tumor susceptibility gene 101¡]TSG101¡^encodes an inactive ubiquitin conjugating E2 enzyme implicated in regulation of protein sorting, vesicular trafficking, transcription activation of nuclear receptor, cell growth and differentiation. Previous studies showed that TSG101 can be mono- or poly- ubiquitinated, which is relevant to its functional status. There are seven Lysine (K) sites, K6, K11, K27, K29, K33, K48 and K63, on ubiquitin (Ub). Polyubiquitination using different Ub K sites confers differential function for protein degradation, DNA damage repair, endocytosis and protein sorting. AIP4 E3 ubiquitin ligase modifies its substrates involved in erythroid and lymphoid lineage differentiation and the associated immune responses. Mutation in AIP4 gene resolves in multisystemic autoimmune disease. TSG101 was recently shown to be a molecular checkpoint for T cell receptor downregulation. Here we investigate the ubiqutination status of TSG101. The ubiquitin-conjugated protein in lysate of cells co-transfected with pHA-TSG101 and His-tagged wild type Ub or each K site mutant ubiquitin expression plasmids was purified on nickel beads and then subjected to western blotting using antibodies against HA-TSG101 or His-tag. The results showed that K series mutant had differential effect on the steady-state of HA-TSG101. Proteasome inhibitor could alleviate its degradation especially in the K63 ubiquitin expression group, implying K63 ubiquitination E3 ligase is critical in maintaining HA-TSG101 level. Our coimmunoprecipitation result demonstrated the interaction between AIP4 and HA-TSG101, implying that TSG101 might be a substrate for AIP4. The ectopic overexpression of AIP4 increased the amount of HA-TSG101 in an E3 ligase activity depended manner. Taken together, these results indicated that AIP4 activity mediating Ub K63 modification might be critical for regulating cellular TSG101 protein level. Further experiment should clarify this issue.
22

The Role of ABI3-interacting Protein2 in the Regulation of FUSCA3 in Arabidopsis thaliana

Duong, Simon 22 November 2013 (has links)
Seed maturation is an important process that is evolutionarily advantageous, allowing for seed dispersal and germination under favourable growth conditions. The B3-domain transcription factor FUSCA3 (FUS3) is a master regulator of seed maturation and controls developmental phase transitions through hormonal regulation in Arabidopsis thaliana. The aim of this study was to determine the post-translational regulation of FUS3 during embryonic and vegetative development. Here, FUS3 was found to interact with the E3 ubiquitin ligase ABI3-INTERACTING PROTEIN2 (AIP2) in yeast two-hybrid, in vitro, and in planta assays. Analysis of transcriptional and translational reporters also showed overlapping spatial and temporal expression patterns of AIP2 and FUS3. Furthermore, in vitro FUS3 degradation was delayed in aip2-1 mutant and increased FUS3-GFP levels were observed during mid-embryogenesis in aip2-1. Finally, double transgenic plants overexpressing AIP2 and FUS3 showed reduced FUS3 levels and reversion of the gain-of-function FUS3 phenotypes back to WT. Together, these results indicate that AIP2 is a negative regulator of FUS3.
23

In vitro and in vivo characterization of the E3 ubiquitin ligase RNF157 in the brain

Lee, Shih-Ju 01 December 2014 (has links)
No description available.
24

The Role of the Ubiquitin Ligase Nedd4-1 in Skeletal Muscle Atrophy

Nagpal, Preena 26 November 2012 (has links)
Skeletal muscle (SM) atrophy complicates many illnesses, diminishing quality of life and increasing disease morbidity, health resource utilization and health care costs. In animal models of muscle atrophy, loss of SM mass results predominantly from ubiquitin-mediated proteolysis and ubiquitin ligases are the key enzymes that catalyze protein ubiquitination. We have previously shown that ubiquitin ligase Nedd4-1 is up-regulated in a rodent model of denervation-induced SM atrophy and the constitutive expression of Nedd4-1 is sufficient to induce myotube atrophy in vitro, suggesting an important role for Nedd4-1 in the regulation of muscle mass. In this study we generate a Nedd4-1 SM specific-knockout mouse and demonstrate that the loss of Nedd4-1 partially protects SM from denervation-induced atrophy confirming a regulatory role for Nedd4-1 in the maintenance of muscle mass in vivo. Nedd4-1 did not signal downstream through its known substrates Notch-1, MTMR4 or FGFR1, suggesting a novel substrate mediates Nedd4-1’s induction of SM atrophy.
25

DCAF12 Is Required For Synaptic Function and Plasticity at the Drosophila Neuromuscular Junction

Patrón, Lilian Adilene, Patrón, Lilian Adilene January 2017 (has links)
We employed imaging, electrophysiological, and molecular techniques with the genetically tractable model organism Drosophila melanogaster to unravel fundamental biological and genetic underpinnings regulating synaptic function and plasticity. Using a forward genetic screen, we identified mutations in the Drosophila ortholog of a human WD40 repeat-containing protein termed DDB1 and CUL4 associated factor 12 (DCAF12). We show that DCAF12 likely serves as an adaptor protein for the DDB1-Cul4 E3 ubiquitin ligase complex by recruiting specific target proteins for ubiquitination. DCAF12 is expressed in neurons, muscles, and glia. In mitotically active cells such as muscles, DCAF12 is localized to nuclei and co-localizes in distinct foci with CUL4, suggesting that DCAF12 mediates a nuclear role for the CUL4 E3 ubiquitin ligase complex. In neurons, DCAF12 is localized to both cytoplasmic and nuclear compartments of motor neuron cell bodies, where it colocalizes with Cul4 in nuclei. DCAF12 is also expressed at the periactive zone of presynaptic terminals, but does not distinctly associate with DDB1 or Cul4 at this region. Evoked neurotransmitter release at larval NMJs is significantly reduced in DCAF12 mutants. These defects are rescued by presynaptic expression of wild-type DCAF12, demonstrating that DCAF12 is required presynaptically and serves as an important component of the machinery that facilitates evoked release. In addition, our studies show that DCAF12 is required for the differential expression of glutamate receptor subunits at the larval NMJ through transcriptional and post-translational mechanisms. GluRIID subunit mRNA levels and GluRIIA/C/D subunit protein levels are increased at DCAF12 mutant NMJs. Normal GluRIIA subunit levels can be restored by postsynaptic expression of wild-type DCAF12, but not with a truncated DCAF12 protein lacking a nuclear localization signal (∆NLS-DCAF12). Furthermore, DCAF12 overexpression in muscle nuclei reduces synaptic GluRIIA levels, an effect that can be suppressed by removing a copy of Cul4. These data strongly indicate that DCAF12 in muscle nuclei is required for GluRIIA expression and/or function in a Cul4-dependent manner. Moreover, homozygous DCAF12-GluRIIA double mutants show a strong synthetic lethality phenotype, providing further support for the hypothesis that GluRIIA directly or indirectly requires DCAF12. Mutations in glutamate receptors at larval NMJs trigger a retrograde trans-synaptic signal that leads to a compensatory increase in presynaptic release, which precisely restores the normal efficacy of synaptic transmission and muscle excitation. Reducing the gene dosage of DCAF12 by one gene copy suppresses the initiation and maintenance of GluRIIA-mediated synaptic homeostatic potentiation. This block of synaptic homeostatic potentiation can be rescued by presynaptic expression of DCAF12. In our studies, we determined that DCAF12 is critical for 3 distinct synaptic mechanisms: evoked neurotransmitter release, neurotransmitter reception by regulation of GluR subunit composition, and retrograde synaptic homeostatic signaling. Future research will strive to identify presynaptic and postsynaptic protein targets of DCAF12 and the Cul4 E3 ubiquitin ligase complex and the role of ubiquitination in regulating these synaptic processes.
26

Caractérisation des interactions moléculaires entre la GTPase Rac1 et son régulateur HACE1 : perspectives en infectiologie et en cancérologie / Characterization of molecular interactions between the E3 ubiquitin-ligase HACE1 and its target Rac1

Lotte, Romain 24 October 2017 (has links)
La GTPase Rac1 est une protéine de signalisation intracellulaire qui joue notamment un rôle clé dans la prolifération cellulaire. Notre laboratoire a montré que la toxine CNF1, produite par les Escherichia coli pathogènes, catalyse l’activation de Rac1. Nous avons également identifié le rôle de la E3 ubiquitine-ligase HACE1, un suppresseur de tumeur avéré, dans la régulation par ubiquitylation de Rac1 actif. S’il est prouvé que la forme activée de Rac1 est une cible d’HACE1, le mode d’interaction de ces deux protéines reste à définir ainsi que le rôle de ces interactions dans l’infection et le cancer. L’objectif de mon travail a été de caractériser les interactions moléculaires entre HACE1 et Rac1. Nous avons testé l’hypothèse que des mutations ponctuelles d’HACE1 identifiées dans les cancers pourraient interférer avec son interaction avec Rac1 et sa capacité de contrôle de la croissance cellulaire. J’ai ainsi pu mettre en évidence que 13 mutations somatiques d’HACE1 issues de tumeurs séquencées altèrent sa fonction de contrôle de la croissance cellulaire. De plus, l’étude de ces mutations nous a permis d’identifier un groupe d’acides aminés, situés sur les ankyrin-repeats 5 à 7 d’HACE1, qui contrôle l’interaction d’HACE1 avec Rac1 et de ce fait son ubiquitylation. Enfin dans cette étude nous précisons le rôle du domaine intermédiaire d’HACE1 (MID) dans la spécificité d’interaction de la ligase avec la forme active de Rac1. In fine, la caractérisation de mutants d’interaction entre HACE1 et Rac1 ainsi que l’effet de la toxine CNF1 sur cet axe de signalisation doit nous renseigner sur l’importance de cette voie de régulation dans le cancer et l’infection. / The small GTPase Rac1 plays a key role in various intracellular signaling pathways including cell proliferation. Our laboratory has shown that the CNF1 toxin, produced by pathogenic Escherichia coli, catalyzes the activation of Rac1. We also identified the role of the E3 ubiquitin-ligase HACE1, a tumor suppressor, in the regulation by ubiquitylation of active Rac1. If the activated form of Rac1 is proved to be a target of HACE1, the mode of interaction between these two proteins remains to be define as well as the role of these interactions in infection and cancer. The aim of my work was to characterize the molecular interactions between HACE1 and Rac1. We tested the hypothesis that HACE1 point mutations identified in cancers could interfere with its interaction with Rac1 and its ability to control cell growth. We showed that 13 cancer-associated somatic mutations of HACE1, led to a defective control of cell proliferation. Moreover, the study of these mutations allowed us to identify a group of amino acids, located on the ankyrin-repeats 5 to 7 of HACE1, which controls the interaction of HACE1 with Rac1 and thus its ubiquitylation. We also identified a role for the intermediate domain of HACE1 (MID) in conferring the specificity of association of HACE1 to the active form of Rac1. Ultimately, the characterization of interaction mutants between HACE1 and Rac1 as well as the effect of the CNF1 toxin on this signaling axis will give us more insight on this regulatory pathway in cancer and infection.
27

SEL1Lの分解中間体はポリグルタミンタンパク質の細胞質での凝集を促進する

服部, 徳哉 24 January 2022 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第23600号 / 理博第4762号 / 新制||理||1683(附属図書館) / 京都大学大学院理学研究科生物科学専攻 / (主査)准教授 細川 暢子, 教授 杤尾 豪人, 教授 森 和俊 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
28

Phosphorylation and mechanistic regulation of a novel IKK substrate, ITCH

Perez, Jessica Marie 02 February 2018 (has links)
No description available.
29

Characterization of the Arabidopsis glutamine dumper1 mutant reveals connections between amino acid homeostasis and plant stress responses

Yu, Shi 15 April 2015 (has links)
Amino acids constitute the major organic form of transported nitrogen in plants, elements for protein synthesis, and precursors of many plant secondary metabolites, such as lignin, hormones, and flavonoids. Furthermore, amino acid metabolism lies at the crossroad of carbon and nitrogen metabolism. The Arabidopsis glutamine dumper1 (gdu1) mutant secretes glutamine from hydathodes, a phenotype caused by the overexpression of Glutamine Dumper1 (GDU1). GDU1 is a small transmembrane protein presents only in higher plants. The gdu1-1D mutant shows a pleiotropic phenotype: perturbed amino acid metabolism, tolerance to exogenous toxic concentrations of amino acids, elevated amino acid export, and activated stress/defense responses, lesions, and smaller rosettes. The biochemical function of GDU1 remains elusive. To better elucidate the biological processes leading to the complex Gdu1D phenotype, two approaches were conducted: (1) An ethyl methanesulfonate suppressor screening of the Gdu1D phenotype, which led to the isolation of intragenic mutations in GDU1 and mutations in the ubiquitin ligase LOG2 (Loss Of Gdu1D 2). Study of the intragenic mutations in GDU1 helped to characterize its structure-function relationships. Characterization of LOG2 showed that LOG2 interacts with GDU1 and is necessary for the Gdu1D phenotype. (2) The responses of the plant to the dexamethasone-induced expression of GDU1 were studied over time. This experiment identified major signaling pathways contributing to different components of the Gdu1D phenotype and the early events triggered by the perturbation of amino acid homeostasis. Our results showed that GDU1 overexpression first increases amino acid export, which is followed by amino acid imbalance and stress responses. This study sheds light on how amino acid imbalance interacts with various plant signaling pathways and stress responses, and suggests that LOG2 is involved in this process. / Ph. D.
30

Identifizierung neuer MuRF-Multiproteinkomplex assoziierter Proteine

Nowak, Marcel 31 July 2014 (has links)
Die Muscle-RING-finger (MuRF) Proteine sind E3-Ubiquitin-Ligasen, die im Muskelgewebe den Ubiquitin-Proteasom-System abhängigen Abbau von Proteinen vermitteln. MuRF1 wird in der Muskelatrophie verstärkt synthetisiert, was zu einem gesteigerten Proteinabbau und damit zum Verlust von Muskelmasse führt. Zudem sind Mäuse, denen MuRF1 fehlt vor Muskelatrophie geschützt. E3-Ubiquitin-Ligasen fungieren oftmals in Multiproteinkomplexen. Dies wurde für MuRF-Proteine bisher nicht gezeigt. Aufgrund dessen sollten neue MuRF-Multiproteinkomplex assoziierte Faktoren mittels Hefe-Zwei-Hybrid-System und SILAC AP-MS identifiziert und deren Einfluss auf die MuRF-Funktion charakterisiert werden. Es wurden sowohl neue als auch publizierte MuRF-Interaktionspartner (Iap) gefunden. Von den neu entdeckten MuRF-Iap wurde der Fokus auf WDR42A gelegt, da das Protein mit beiden Methoden identifiziert wurde und zudem funktionell hoch interessant ist. WDR42A homologe Proteine bilden zirkuläre β-Propeller Strukturen die Multiproteinkomplexe koordinieren. Die Interaktion zwischen MuRF-Proteinen und WDR42A wurde mittels Ko-IP Experimenten und Kolokalisationsstudien bestätigt. Cycloheximid-Abbau-Experimente deuten darauf hin, dass WDR42A kein MuRF1 Substrat-Protein ist. Da die MuRF-Proteine spezifisch im Muskel hergestellt werden, sollte überprüft werden ob WDR42A ebenfalls im Muskelgewebe synthetisiert wird. Es wurde gezeigt, dass WDR42A ubiquitär sowie im Muskelgewebe und in immortalisierten Muskelzellen hergestellt wird. Analog zu MuRF1 wird WDR42A in der Denervations-induzierten Skelettmuskelatrophie und der Muskelentwicklung verstärkt synthetisiert. Die Herunterregulation von WDR42A mittels siRNA in C2C12 Myotuben schützte diese Zellen vor dem Auftreten von Atrophie. Diese Ergebnisse zeigen, dass WDR42A wie MuRF1 an der Entstehung von Muskelatrophie beteiligt ist. Aufgrund der WDR42A Domänenstruktur wird vermutet, dass WDR42A als Scaffolding-Protein MuRF1-Multiproteinkomplexe reguliert. / The muscle-RING-finger (MuRF) proteins are E3 ubiquitin ligases which coordinate the ubiquitin-proteasome system dependent protein degradation in muscle tissue. MuRF1 is up-regulated under muscle atrophy conditions. This leads to enhanced proteolysis and thereby to loss of muscle mass and strength. Furthermore are MuRF1 knockout mice resistant to muscle atrophy. E3 ubiquitin ligases often operate in multi-protein complexes. This has not been shown for MuRF proteins. Therefore we used yeast-two-hybrid and SILAC-AP-MS to identify and subsequently characterize new MuRF multi-protein complex associated proteins. We found new and also published MuRF interaction partners (Iap) with both methods. Amongst the new Iap, we focused on WDR42A, because it was found with both techniques and his interesting functional potential. WDR42A exhibits seven consecutive arranged WD40-repeat domains. This domain arrangement leads in homologues proteins to the formation of seven-bladed β-propeller structures, which act as protein interaction platforms that coordinate multi-protein complexes. The protein interaction between the MuRFs and WDR42A was confirmed with Co-IP and co-localization experiments. Cycloheximide decay experiments indicated that WDR42A is not a MuRF1 substrate protein. The MuRF proteins are muscle specific, therefore we tested if WDR42A is also synthetized in muscle tissue. We could show that WDR42A is ubiquitously, but also in muscle tissue as well as in immortalized muscle cells produced. WDR42A is similar to MuRF1 up-regulated under denervation-induced skeletal muscle atrophy as well as in muscle development. Furthermore are C2C12 myotubes resistant to muscle atrophy after siRNA down-regulation of WDR42A. These results demonstrate that WDR42A is like MuRF1 important for the development of muscle atrophy. Due to the domain structure of WDR42A, we hypothesize that WDR42A regulates MuRF1 multi protein complexes as scaffolding protein.

Page generated in 0.0371 seconds