• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural dynamics of photoexcited nanolayered perovskites studied by ultrafast x-ray diffraction

Herzog, Marc January 2012 (has links)
This publication-based thesis represents a contribution to the active research field of ultrafast structural dynamics in laser-excited nanostructures. The investigation of such dynamics is mandatory for the understanding of the various physical processes on microscopic scales in complex materials which have great potentials for advances in many technological applications. I theoretically and experimentally examine the coherent, incoherent and anharmonic lattice dynamics of epitaxial metal-insulator heterostructures on timescales ranging from femtoseconds up to nanoseconds. To infer information on the transient dynamics in the photoexcited crystal lattices experimental techniques using ultrashort optical and x-ray pulses are employed. The experimental setups include table-top sources as well as large-scale facilities such as synchrotron sources. At the core of my work lies the development of a linear-chain model to simulate and analyze the photoexcited atomic-scale dynamics. The calculated strain fields are then used to simulate the optical and x-ray response of the considered thin films and multilayers in order to relate the experimental signatures to particular structural processes. This way one obtains insight into the rich lattice dynamics exhibiting coherent transport of vibrational energy from local excitations via delocalized phonon modes of the samples. The complex deformations in tailored multilayers are identified to give rise to highly nonlinear x-ray diffraction responses due to transient interference effects. The understanding of such effects and the ability to precisely calculate those are exploited for the design of novel ultrafast x-ray optics. In particular, I present several Phonon Bragg Switch concepts to efficiently generate ultrashort x-ray pulses for time-resolved structural investigations. By extension of the numerical models to include incoherent phonon propagation and anharmonic lattice potentials I present a new view on the fundamental research topics of nanoscale thermal transport and anharmonic phonon-phonon interactions such as nonlinear sound propagation and phonon damping. The former issue is exemplified by the time-resolved heat conduction from thin SrRuO3 films into a SrTiO3 substrate which exhibits an unexpectedly slow heat conductivity. Furthermore, I discuss various experiments which can be well reproduced by the versatile numerical models and thus evidence strong lattice anharmonicities in the perovskite oxide SrTiO3. The thesis also presents several advances of experimental techniques such as time-resolved phonon spectroscopy with optical and x-ray photons as well as concepts for the implementation of x-ray diffraction setups at standard synchrotron beamlines with largely improved time-resolution for investigations of ultrafast structural processes. This work forms the basis for ongoing research topics in complex oxide materials including electronic correlations and phase transitions related to the elastic, magnetic and polarization degrees of freedom. / Diese publikationsbasierte Dissertation ist ein Beitrag zu dem aktuellen Forschungsgebiet der ultraschnellen Strukturdynamik in laserangeregten Nanostrukturen. Die Erforschung solcher Vorgänge ist unabdingbar für ein Verständnis der vielseitigen physikalischen Prozesse auf mikroskopischen Längenskalen in komplexen Materialien, welche enorme Weiterentwicklungen für technologische Anwendungen versprechen. Meine theoretischen und experimentellen Untersuchungen betrachten kohärente, inkohärente und anharmonische Gitterdynamiken in epitaktischen Metal-Isolator-Heterostrukturen auf Zeitskalen von Femtosekunden bis Nanosekunden. Um Einsichten in solche transienten Prozesse in laserangeregten Kristallen zu erhalten, werden experimentelle Techniken herangezogen, die ultrakurze Pulse von sichtbarem Licht und Röntgenstrahlung verwenden. Ein zentraler Bestandteil meiner Arbeit ist die Entwicklung eines Linearkettenmodells zur Simulation und Analyse der laserinitiierten Atombewegungen. Die damit errechneten Verzerrungsfelder werden anschließend verwendet, um die Änderung der optischen und Röntgeneigenschaften der betrachteten Dünnfilm- und Vielschichtsysteme zu simulieren. Diese Rechnungen werden dann mit den experimentellen Daten verglichen, um die experimentellen Signaturen mit errechneten strukturellen Prozessen zu identifizieren. Dadurch erhält man Einsicht in die vielseitige Gitterdynamiken, was z.B. einen kohärenten Transport der Vibrationsenergie von lokal angeregten Bereichen durch delokalisierte Phononenmoden offenbart. Es wird gezeigt, dass die komplexen Deformationen in maßgeschneiderten Vielschichtsystemen hochgradig nichtlineare Röntgenbeugungseffekte auf Grund von transienten Interferenzerscheinungen verursachen. Das Verständnis dieser Prozesse und die Möglichkeit, diese präzise zu simulieren, werden dazu verwendet, neuartige ultraschnelle Röntgenoptiken zu entwerfen. Insbesondere erläutere ich mehrere Phonon-Bragg-Schalter-Konzepte für die effiziente Erzeugung ultrakurzer Röntgenpulse, die in zeitaufgelösten Strukturanalysen Anwendung finden. Auf Grund der Erweiterung der numerischen Modelle zur Beschreibung von inkohärenter Phononenausbreitung und anharmonischer Gitterpotentiale decken diese ebenfalls die aktuellen Themengebiete von Wärmetransport auf Nanoskalen und anharmonischer Phonon-Phonon-Wechselwirkung (z.B. nichtlineare Schallausbreitung und Phononendämpfung) ab. Die erstere Thematik wird am Beispiel der zeitaufgelösten Wärmeleitung von einem dünnen SrRuO3-Film in ein SrTiO3-Substrat behandelt, wobei ein unerwartet langsamer Wärmetransport zu Tage tritt. Außerdem diskutiere ich mehrere Experimente, die auf Grund der sehr guten Reproduzierbarkeit durch die numerischen Modelle starke Gitteranharmonizitäten in dem oxidischen Perowskit SrTiO3 bezeugen. Diese Dissertation erarbeitet zusätzlich verschiedene Weiterentwicklungen von experimentellen Methoden, wie z.B. die zeitaufgelöste Phononenspektroskopie mittels optischer Photonen und Röntgenphotonen, sowie Konzepte für die Umsetzung von Röntgenbeugungsexperimenten an Standard-Synchrotronquellen mit stark verbesserter Zeitauflösung für weitere Studien von ultraschnellen Strukturvorgängen.
2

Ultrafast lattice dynamics in photoexcited nanostructures : femtosecond X-ray diffraction with optimized evaluation schemes

Schick, Daniel January 2013 (has links)
Within the course of this thesis, I have investigated the complex interplay between electron and lattice dynamics in nanostructures of perovskite oxides. Femtosecond hard X-ray pulses were utilized to probe the evolution of atomic rearrangement directly, which is driven by ultrafast optical excitation of electrons. The physics of complex materials with a large number of degrees of freedom can be interpreted once the exact fingerprint of ultrafast lattice dynamics in time-resolved X-ray diffraction experiments for a simple model system is well known. The motion of atoms in a crystal can be probed directly and in real-time by femtosecond pulses of hard X-ray radiation in a pump-probe scheme. In order to provide such ultrashort X-ray pulses, I have built up a laser-driven plasma X-ray source. The setup was extended by a stable goniometer, a two-dimensional X-ray detector and a cryogen-free cryostat. The data acquisition routines of the diffractometer for these ultrafast X-ray diffraction experiments were further improved in terms of signal-to-noise ratio and angular resolution. The implementation of a high-speed reciprocal-space mapping technique allowed for a two-dimensional structural analysis with femtosecond temporal resolution. I have studied the ultrafast lattice dynamics, namely the excitation and propagation of coherent phonons, in photoexcited thin films and superlattice structures of the metallic perovskite SrRuO3. Due to the quasi-instantaneous coupling of the lattice to the optically excited electrons in this material a spatially and temporally well-defined thermal stress profile is generated in SrRuO3. This enables understanding the effect of the resulting coherent lattice dynamics in time-resolved X-ray diffraction data in great detail, e.g. the appearance of a transient Bragg peak splitting in both thin films and superlattice structures of SrRuO3. In addition, a comprehensive simulation toolbox to calculate the ultrafast lattice dynamics and the resulting X-ray diffraction response in photoexcited one-dimensional crystalline structures was developed in this thesis work. With the powerful experimental and theoretical framework at hand, I have studied the excitation and propagation of coherent phonons in more complex material systems. In particular, I have revealed strongly localized charge carriers after above-bandgap femtosecond photoexcitation of the prototypical multiferroic BiFeO3, which are the origin of a quasi-instantaneous and spatially inhomogeneous stress that drives coherent phonons in a thin film of the multiferroic. In a structurally imperfect thin film of the ferroelectric Pb(Zr0.2Ti0.8)O3, the ultrafast reciprocal-space mapping technique was applied to follow a purely strain-induced change of mosaicity on a picosecond time scale. These results point to a strong coupling of in- and out-of-plane atomic motion exclusively mediated by structural defects. / Im Rahmen dieser Arbeit habe ich mich mit den komplexen Wechselwirkungen zwischen Elektronen- und Gitterdynamik in oxidischen Perowskit-Nanostrukturen beschäftigt. Dazu wurden verschiedene Proben mit intensiven, ultrakurzen Laserpulsen angeregt. Um die zeitliche Entwicklung der induzierten atomaren Umordnung zu untersuchen, wurden Femtosekunden-Pulse harter Röntgenstrahlung genutzt. Zunächst wurde die ultraschnelle Gitterdynamik in einfachen Modellsystemen mit zeitaufgelösten Röntgendiffraktionsexperimenten untersucht, um im Anschluss ähnliche Experimente an komplexeren Materialien mit mehreren Freiheitsgraden interpretieren zu können. Die Bewegung der Atome in einem Kristall kann über Anrege-Abtast-Verfahren direkt mit gepulster, harter Röntgenstrahlung gemessen werden. Die Dauer der Röntgenpulse muss dafür einige hundert Femtosekunden kurz sein. Um diese ultrakurzen Röntgenpulse zu erzeugen, habe ich eine lasergetriebene Plasma-Röntgenquelle aufgebaut. Der Aufbau wurde um ein stabiles Goniometer, einen zweidimensionalen Röntgendetektor und einen kryogenfreien Kryostat erweitert und in Bezug auf das Signal-zu-Rausch-Verhältnis und die Winkelauflösung optimiert. Durch die Entwicklung einer schnellen Methode zur Vermessung des reziproken Raums konnte erstmals an solch einer Quelle eine zweidimensionale Strukturanalyse mit Femtosekunden-Zeitauflösung realisiert werden. Die Anregung und Ausbreitung von kohärenten Phononen habe ich in optisch angeregten Dünnfilm- und Übergitterstrukturen untersucht. Eine entscheidende Rolle spielen dabei metallische SrRuO3 Schichten. Durch die quasi-instantane Kopplung des Gitters an die optisch angeregten Elektronen in SrRuO3 wird ein räumlich und zeitlich wohldefiniertes Druckprofil erzeugt. Dadurch kann der Einfluss der resultierenden kohärenten Gitterdynamik auf die zeitaufgelösten Röntgendiffraktionsdaten im Detail verstanden werden. Beobachtet wurde z.B. das Auftreten einer transienten Aufspaltung eines Bragg-Reflexes bei Dünnfilm- und Übergitterstrukturen aus SrRuO3. Außerdem wurde eine umfangreiche Simulationsumgebung entwickelt, mit deren Hilfe die ultraschnelle Dynamik und die dazugehörigen Röntgendiffraktionssignale in optisch angeregten eindimensionalen Kristallstrukturen berechnet werden können. Der von mir entwickelte experimentelle Aufbau sowie das Simulationspaket zur Datenanalyse und -interpretation wurden anschließend für die Untersuchung kohärenter Phononen in komplexeren Materialsystemen eingesetzt. Im Speziellen konnte ich in multiferroischem BiFeO3 eine stark lokalisierte Ladungsträgerverteilung nach einer optischen Femtosekunden-Anregung nachweisen. Sie ist die Ursache für einen quasi-instantanen und räumlich inhomogenen Druck, der die kohärenten Phononen in einem dünnen Film dieses Multiferroikums erzeugt. Außerdem habe ich die ultraschnelle Vermessung des reziproken Raums angewendet, um eine verzerrungsinduzierte Veränderung der Mosaizität in einem strukturell unvollkommenen Film aus ferroelektrischem Pb(Zr0.2Ti0.8)O3 zu verfolgen. Die Ergebnisse deuten auf eine ausschließlich durch strukturelle Defekte vermittelte Kopplung der atomaren Bewegungen parallel und senkrecht zur Flächennormalen des Filmes hin.
3

Untersuchung der ultraschnellen Polarisationsdynamik in Lithiumborhydrid mittels Femtosekunden Röntgenbeugung

Stingl, Johannes 21 November 2013 (has links)
In dieser Arbeit wird die ultraschnelle elektronische Polarisation in dem kristallinen Festkörper Lithiumborhydrid (LiBH4) untersucht. Das Material wird dabei mit einem femtosekundenlangen optischen Impuls angeregt und mit einem ebenso kurzen Röntgenimpuls abgetastet. Mithilfe der Röntgenbeugung kann die optisch induzierte räumliche Neuordnung elektronischer Ladung direkt mit atomarer räumlicher Auflösung abgebildet werden. Kupfer K-alpha Röntgenstrahlung für das Experiment wird im Labor aus einer Laser-Plasmaquelle mit 1 kHz Wiederholrate erzeugt. Diese Strahlung wird dann auf eine pulverisierte LiBH4-Probe fokussiert. Die Debye-Scherrer Ringe, die bei Pulverbeugung entstehen, werden mit einem großflächigen Detektor aufgezeichnet und zu Intensitätsprofilen aufbereitet. Mittels Anrege-Abtast-Technik wird die Änderung der Beugungsintensitäten, ausgelöst durch die optische Anregung mit einem optischen Femtosekunden-Impuls, zeitaufgelöst untersucht. Dabei ist die Zeitauflösung durch die Verzögerungzeit zwischen Anrege- und Abtastimpuls gegeben. Daraus ergibt sich ein Einblick in die dynamische elektronische Entwicklung des Systems. Intensitätsänderungen können dann mit Änderungen in der Ladungsdichte des Materials korreliert werden, um strukturelle Dynamik auf der Femtosekunden Zeitskala aufzuklären. Lithiumborhydrid wurde gewählt, weil es Eigenschaften aufweist, die für eine Erforschung der ultraschnellen elektronischen Polarisation notwendig sind. Bisher gibt es keine räumlich aufgelöste Untersuchung im Femtosekunden-Bereich, die zur Erklärung dieses elektronischen Phänomens beträgt. Diese Arbeit präsentiert die ultraschnelle Antwort von LiBH4 auf starke elektrische Felder bei optischen Frequenzen, die zu Ladungsumverteilung und damit einhergehende elektronische Polarisation führt. / In this thesis the ultrafast electronic polarisation in the crystalline material lithium borohydride (LiBH4) is examined. The material is excited by a femtosecond long optical pulse and scanned by a likewise short x-ray pulse. Using x-ray scattering the optically induced spatial rearrangement of electronic charge can be directly mapped with atomic spatical resolution. Copper K-alpha x-rays for the experiment are produced in a laboratory table-top laserplasma source with 1 kHz repetition rate. This radiation is then focused on a powdered sample. Debye-Scherrer rings produced from powder diffraction are collected on a large area detector and processed to yield intensity profiles. Using pump-probe technique the change in diffracted intensity, triggered by excitation with a femtosecond optical pulse is examined. The temporal resolution is given by the delay between pump and probe pulse. This way insight is gained into the dynamic electronic evolution of the system. Intensity changes can be correlated to changes in charge density in the relevant material to elucidate structural dynamics on the femtosecond time scale. Lithium borohydride was chosen since it displays necessary characteristics for the exploration of ultrafast electronic polarisation. Up to date there has been no spatially resolved research in the femtosecond regime elucidating this electronic phenomenon. This work presents the ultrafast resonse in Lithiumborhydrid (LiBH4) to strong electronic fields with optical frequencies, which leads to charge relocation accompanied by electronic polarisation.

Page generated in 0.0968 seconds