• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Seleção Ativa de Exemplos de Treinamento para Meta-Aprendizado

Sousa, Arthur Fernandes Minduca de 29 July 2013 (has links)
Submitted by Daniella Sodre (daniella.sodre@ufpe.br) on 2015-03-10T11:54:25Z No. of bitstreams: 2 Dissertaçao Arthur Minduca.pdf: 1331924 bytes, checksum: c5fbf43c427a68b5d9b2a75d156766cb (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Made available in DSpace on 2015-03-10T11:54:25Z (GMT). No. of bitstreams: 2 Dissertaçao Arthur Minduca.pdf: 1331924 bytes, checksum: c5fbf43c427a68b5d9b2a75d156766cb (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Previous issue date: 2013-07-29 / Várias abordagens têm sido aplicadas à tarefa de seleção de algoritmos. Nesse contexto, Meta-Aprendizado surge como uma abordagem eficiente para predizer o desempenho de algoritmos adotando uma estratégia supervisionada. Os exemplos de treinamento de Meta-Aprendizado (ou meta-exemplos) são construídos a partir de um repositório de instâncias de problemas (como, por exemplo, um repositório de bases de dados de classificação). Cada meta-exemplo armazena características descritivas de uma instância de problema e um rótulo indicando o melhor algoritmo para o problema (empiricamente identificado entre um conjunto de algoritmos candidatos). Os melhores algoritmos para novos problemas podem ser preditos se baseando apenas em suas características descritivas, sem a necessidade de qualquer avaliação empírica adicional dos algoritmos candidatos. Apesar dos resultados Meta-Aprendizado requererem a implementação de um número suficiente de instâncias de problemas para produzir um conjunto rico de meta-exemplos. Abordagens recentes para gerar conjuntos de dados sintéticos ou manipulado foram adotados com sucesso no contexto de Meta-Aprendizado. Essas propostas incluem a abordagem de Datasetoids, que é uma técnica simples de manipulação de dados que permite a geração de novos conjuntos de dados a partir de bases existentes. Apesar dessas propostas produzirem dados relevantes para Meta-Aprendizado, eles podem eventualmente produzir instâncias de problemas redundantes ou até mesmo irrelevantes. Meta-Aprendizado Ativo surge nesse contexto para selecionar somente as instâncias mais informativas para a geração de meta-exemplos. Neste trabalho, investigamos o uso de Meta- Aprendizado Ativo combinado com Datasetoids, focando no uso do algoritmo Random forest em Meta-Aprendizado. Para selecionar as instâncias de problemas, implementamos um critério de incerteza baseado em entropia, específico para o Random forest. Também investigamos o uso de uma técnica de detecção de outliers a fim de remover a priori os problemas considerados outliers, objetivando melhorar o desempenho dos métodos de Aprendizagem Ativa. Nossos experimentos revelaram uma melhora no desempenho do Meta-Aprendizado e uma redução no custo computacional para a geração de meta-exemplos.
2

An Empirical Active Learning Study for Temporal Segment Networks

Mao, Jilei January 2022 (has links)
Video classification is the task of producing a label that is relevant to the video given its frames. Active learning aims to achieve greater accuracy with fewer labeled training instances through a designed query strategy that can select representative instances from the unlabeled training instances and send them to be labeled by an oracle. It is successfully used in many modern machine learning problems. To figure out how different active learning strategies work on the video classification task, we test several active learning strategies including margin sampling, standard deviation sampling, and center sampling on Temporal Segment Networks (TSN, a classic neural network designed for video classification). We profile these three active learning strategies on systematic control experiments and get the respective models, then we compare these models’ confusion matrix, data distribution, and training log with the baseline models after the first round of query. We observe that the comparison results among models are different under different evaluation criteria. Among all the evaluation criteria we use, the average performance of center sampling is better than that of random sampling, while margin sampling and standard deviation sampling get much worse performance than random sampling and center sampling. The training log and data distribution indicate that margin sampling and standard deviation are prone to select outliers inside the data which are hard to learn but apparently not helpful to improve the model performance. Center sampling will easily outperform random sampling by F1-score. Therefore, the evaluation criteria should be formulated according to the actual application requirements. / Videoklassificering är uppgiften att producera en etikett som är relevant för videon uifrån videons bildsekvens. Aktivt lärande syftar till att uppnå större noggrannhet med färre märkta träningsexempel genom en designad frågestrategi för att välja representativa instanser som ska märkas av ett orakel från de omärkta träningsexemplen, och används framgångsrikt i många moderna maskininlärningsproblem. För att ta reda på hur olika aktiva inlärningsstrategier fungerar på videoklassificeringsuppgifter testar vi flera aktiva strategier inklusive marginalsampling, standardavvikelsessampling samt sampling baserat på Temporal Segment Networks (TSN, som är ett klassiskt neuralt nätverk designat för videoklassificeringsuppgift). Vi testar dessa tre aktiva inlärningsstrategier på systematiska kontrollexperiment, sedan jämför vi dessa modellers förvirringsmatris, datamängdsdistribution, träningslogg med baslinjemodellens efter den första frågeomgången. Vi observerar att endast metoden ”urval av centra” överträffar slumpmässigt urval. Metoden med slumpmässiga provtagningar samt metoden med är benägna att välja extremvärden som är svåra att lära sig men tydligen inte till hjälp för att förbättra modellens prestanda.
3

Enhancing Deep Active Learning Using Selective Self-Training For Image Classification

Panagiota Mastoropoulou, Emmeleia January 2019 (has links)
A high quality and large scale training data-set is an important guarantee to teach an ideal classifier for image classification. Manually constructing a training data- set  with  appropriate  labels  is  an  expensive  and  time  consuming  task.    Active learning techniques have been used to improved the existing models by reducing the  number  of  required  annotations.    The  present  work  aims  to  investigate the  way  to  build  a  model  for  identifying  and  utilizing  potential  informative and  representativeness  unlabeled  samples.    To  this  end,  two  approaches  for deep image classification using active learning are proposed, implemented and evaluated.  The two versions of active leaning for deep image classification differ in  the  input  space  exploration  so  as  to  investigate  how  classifier  performance varies  when  automatic  labelization  on  the  high  confidence  unlabeled  samples is  performed.    Active  learning  heuristics  based  on  uncertainty  measurements on low confidence predicted samples,  a pseudo-labelization technique to boost active  learning  by  reducing  the  number  of  human  interactions  and  knowledge transferring  form  pre-trained  models,  are  proposed  and  combined  into  our methodology.  The experimental results on two benchmark image classification data-sets  verify  the  effectiveness  of  the  proposed  methodology.    In  addition, a  new  pool-based  active  learning  query  strategy  is  proposed.     Dealing  with retraining-based algorithms we define a ”forgetting event” to have occurred when an  individual  training  example  transitions  the  maximum  predicted  probability class over the course of retraining. We integrated the new approach with the semi- supervised learning method in order to tackle the above challenges and observedgood performance against existing methods. / En  högkvalitativ  och  storskalig  träningsdataset  är  en  viktig  garanti  för  att  bli en  idealisk  klassificerare  för  bildklassificering.     Att  manuellt  konstruera  en träningsdatasats  med  lämpliga  etiketter  är  en  dyr  och  tidskrävande  uppgift. Aktiv  inlärningstekniker  har  använts  för  att  förbättra  de  befintliga  modellerna genom att minska antalet nödvändiga annoteringar. Det nuvarande arbetet syftar till  att  undersöka  sättet  att  bygga  en  modell  för  att  identifiera  och  använda potentiella informativa och representativa omärkta prover.   För detta ändamål föreslås, genomförs och genomförs två metoder för djup bildklassificering med aktivt  lärande  utvärderas.      De  två  versionerna  av  aktivt  lärande  för  djup bildklassificering  skiljer  sig  åt  i  undersökningen  av  ingångsutrymmet  för  att undersöka hur klassificeringsprestanda varierar när automatisk märkning på de omärkta  proverna  med  hög  konfidens  utförs.   Aktiv  lärande  heuristik  baserad på  osäkerhetsmätningar  på  förutsagda  prover  med  låg  konfidens,  en  pseudo- märkningsteknik för att öka aktivt lärande genom att minska antalet mänskliga interaktioner  och  kunskapsöverföring  av  förutbildade  modeller,  föreslås  och kombineras   i   vår   metod.      Experimentella   resultat   på   två   riktmärken   för bildklassificering datauppsättningar verifierar effektiviteten hos den föreslagna metodiken.   Dessutom föreslås en ny poolbaserad aktiv inlärningsfrågestrategi. När  vi  använder  omskolningsbaserade  algoritmer  definierar  vi  en  ”glömmer händelse” som skulle ha inträffat när ett individuellt träningsexempel överskrider den maximala förutsagda sannolikhetsklassen under omskolningsprocessen.  Vi integrerade den nya metoden med den semi-övervakad inlärning för att hanteraovanstående utmaningar och observeras bra prestanda mot befintliga metoder.
4

A Bayesian Decision Theoretical Approach to Supervised Learning, Selective Sampling, and Empirical Function Optimization

Carroll, James Lamond 10 March 2010 (has links) (PDF)
Many have used the principles of statistics and Bayesian decision theory to model specific learning problems. It is less common to see models of the processes of learning in general. One exception is the model of the supervised learning process known as the "Extended Bayesian Formalism" or EBF. This model is descriptive, in that it can describe and compare learning algorithms. Thus the EBF is capable of modeling both effective and ineffective learning algorithms. We extend the EBF to model un-supervised learning, semi-supervised learning, supervised learning, and empirical function optimization. We also generalize the utility model of the EBF to deal with non-deterministic outcomes, and with utility functions other than 0-1 loss. Finally, we modify the EBF to create a "prescriptive" learning model, meaning that, instead of describing existing algorithms, our model defines how learning should optimally take place. We call the resulting model the Unified Bayesian Decision Theoretical Model, or the UBDTM. WE show that this model can serve as a cohesive theory and framework in which a broad range of questions can be analyzed and studied. Such a broadly applicable unified theoretical framework is one of the major missing ingredients of machine learning theory. Using the UBDTM, we concentrate on supervised learning and empirical function optimization. We then use the UBDTM to reanalyze many important theoretical issues in Machine Learning, including No-Free-Lunch, utility implications, and active learning. We also point forward to future directions for using the UBDTM to model learnability, sample complexity, and ensembles. We also provide practical applications of the UBDTM by using the model to train a Bayesian variation to the CMAC supervised learner in closed form, to perform a practical empirical function optimization task, and as part of the guiding principles behind an ongoing project to create an electronic and print corpus of tagged ancient Syriac texts using active learning.

Page generated in 0.0946 seconds