• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 18
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 72
  • 49
  • 34
  • 18
  • 17
  • 16
  • 15
  • 12
  • 12
  • 12
  • 11
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

STRENGTH-STIFFNESS CORRELATIONS FOR CHEMICALLY TREATED SOILS

Pranavkumar Shivakumar (12535903) 01 June 2022 (has links)
<p> The central theme of the study is to identify strength-stiffness correlations for chemically treated subgrade soils in Indiana. This was done by conducting Unconfined Compression (UC) tests and resilient modulus tests for soils collected at three different sites, namely : US 31, SR 37 and I-65. At each site, soil samples were obtained from 11 locations at 30 ft spacing. The soils were treated in the laboratory with cement, using the same proportions used for construction, and cured for 7 and 28 days before testing. Results from the UC tests were compared with the resilient modulus results that were available. No direct correlation was found between resilient modulus and UCS parameters for the soils investigated in this study. A brief statistical analysis of the results was conducted, and a simple linear regression model involving the soil characteristics (plasticity index, optimum moisture content and maximum dry density) along with UCS and resilient modulus parameters was proposed.  </p>
22

Experimental Investigation of Flame Aerodynamics for Confined and Unconfined Flow for a Novel Radial-Radial Novel Injector using 2D Laser Doppler Velocimetry

Soni, Abhishek 30 July 2019 (has links)
No description available.
23

Long-Term Modulus of Microcracked Cement-Treated Base Layers

McDivitt, Patrick Matthew 14 April 2023 (has links)
The objective of this research was to measure and analyze the long-term modulus values of cement-treated base (CTB) layers constructed in Utah using microcracking. Because modulus values of pavement layers are among the most influential inputs affecting mechanistic-empirical pavement design, obtaining reasonable estimates of modulus values is critical. Testing was performed with a portable falling-weight deflectometer, also called a lightweight deflectometer, and modulus values were backcalculated with the computer program BAKFAA. Testing occurred at five asphalt pavement sites in northern Utah, where reconstruction with full-depth reclamation and cement stabilization, in the form of cement slurry, was performed approximately 2 to 14 years previously. Unconfined compressive strength (UCS) data collected for the CTB materials during earlier projects were compiled for all five sites. The correlation between backcalculated CTB modulus values, which ranged from 42 to 433 ksi, and 7-day UCS values, which ranged from 366 to 559 psi, was analyzed, and uniformity and sensitivity analyses were performed. Based on the results of this research, a new correlation is proposed for estimating the long-term modulus values of microcracked CTB layers constructed in a seasonally cold climate, such as northern Utah. For an average 7-day UCS of 450 psi, a CTB modulus value of 114 ksi would be estimated using this correlation, whereas a much higher modulus value of 630 ksi would be estimated from an existing correlation chart that was published in 1972 before microcracking was developed as a CTB construction practice. The results of the uniformity analyses indicate that statistically significant spatial variability in the CTB modulus values exists at each site. In comparison to a proposed maximum threshold coefficient of variation of 40 percent presented in the literature for aspects of CTB construction, the CTB modulus at all of the sites would be characterized as having low uniformity, with values ranging from 42.9 to 90.3 percent. The results of the sensitivity analyses indicate that backcalculated CTB modulus values are sensitive to typical deviations from design values that may occur in pavement layer thicknesses and suggest that CTB modulus estimation errors may range from -22,561 to 62,097 psi, or -3.73 to 10.81 percent, for pavements similar to those studied in this research when the actual asphalt and CTB layer thicknesses are different than the assumed values by up to 0.25 or 0.50 in., respectively.
24

Assessment of lime treatment of expansive clays with different mineralogy at low and high temperatures

Ali, Hatim, Mohamed, Mostafa H.A. 12 December 2019 (has links)
Yes / This paper examines the impacts of clay mineralogy on the effectiveness of lime stabilisation at different temperatures. A comprehensive experimental programme was conducted to track down the evolution of lime-clay reactions and their durations through monitoring the evolution of strength gain at predetermined times using the Unconfined Compressive Strength (UCS) test. The study examined clays with different mineralogy compositions comprising Na+ Bentonite and Ball (Kaolinite) clay. Four different clays were tested including 100% bentonite, 100% Ball clay and two clay mixtures with ratios of 1:1 and 1:3 by mass of bentonite to Ball clay. All clays were treated using a range of lime content up to 25% and cured for a period of time up to 672 h at two different temperatures of 20 and 40 °C. The results showed that the continuity of the fast phase (stage 1) of strength gain was dependent on the availability of lime in particular at the higher temperature. Whereas, for the same lime content, the duration of the fast phase and the kinetic of strength gain were significantly related to the clay mineralogy and curing temperature. Except for the initial strength gain at 0 h curing time, the lime-treated Ball clay specimens at 20 °C appeared to show no strength gain throughout the curing period that extended up to 672 h. However, when curing occurred at 40 °C, the no strength gain stage only lasted for 72 h after which a gradual increase in the strength was observed over the remaining curing period of time. The addition of Bentonite to Ball clay succeeded in kicking off the strength gain after a short period of curing time at both curing temperatures.
25

Effect of Superplasticizer on the Performance Properties of Cemented Paste Backfill at Different Curing Temperatures

Haruna, Sada 28 October 2022 (has links)
Cemented paste backfill (CPB) technology is widely used in the mining industry as an effective means of tailings disposal. CPB is a mixture of tailings, binder, water, and additional admixtures when required. It is prepared in a mixing plant on the ground surface and then transported into the mine cavities through pipelines either by gravity and/or using pumps. To ensure efficiency during transportation and avoid pipe clogging (which can cause unnecessary delays and loss of productivity), fresh CPB must have sufficient flowability. To achieve that, high-range water reducing admixtures, also known as superplasticizers, are usually added to the CPB during mixing. These admixtures are widely used in the construction industry due to their ability to improve flowability without undermining other important engineering properties. However, their influence on the rheology, mechanical strength and environmental performance (reactivity and permeability) of CPB is not fully understood. Thus, experimental studies were conducted to investigate the effects of superplasticizers on the performance properties of cemented paste backfill at different curing temperatures. Yield stress and viscosity of fresh CPB cured for 0, 1, 2, and 4 hours were measured using a vane shear device and a Brookfield Viscometer respectively. Unconfined compressive strength (UCS) of samples cured for 1, 3, 7, and 28 days was determined in accordance with ASTM - C39. Superplasticizer contents were varied as 0%, 0.125%, and 0.25% of the total weight of the CPB. Preparations and curing of the specimens were performed at controlled conditions of 2, 20, and 35 °C to investigate the effect of ambient or curing temperatures. To have a better understanding of the environmental performance of CPB containing superplasticizer, reactivity, and hydraulic conductivity up to 90 days of curing were also investigated. The reactivity was measured using oxygen consumption test while hydraulic conductivity was measured using flexible wall permeability test. Microstructural analyses (thermogravimetric analyses, X-Ray diffraction, and mercury intrusion porosimetry) and monitoring tests (pH, zeta potential, electrical conductivity, and matric suction) were carried out to understand the principles behind the changes of the observed properties. The obtained results show that superplasticizer dosage and temperature variation have significant effects on the rheology, strength development, hydraulic conductivity and reactivity of the CPB. The polycarboxylic ether-based superplasticizer significantly reduces the yield stress and viscosity by creating strong electrostatic repulsion between the solid particles in the CPB and by steric hinderance. The CPB containing the superplasticizer remains fluid for longer period (as compared with the CPB without superplasticizer) due to the retardation of binder hydration. However, high curing temperature induces faster cement hydration, which thickens the fresh CPB. The unconfined compressive strength (UCS) of the CPB containing superplasticizer was observed to be lower in the early age (up to 7 days), which is also attributed to retardation of the binder hydration. At later ages, the superplasticizer improves the mechanical strength as the binder hydration accelerates and the solid particles self-consolidate. Coupled THMC processes in the CPB showed the role played by the changes in electrical conductivity, volumetric water content, matric suction, and temperature on the development of mechanical strength of the CPB containing superplasticizer. Similarly, addition of the superplasticizer in the CPB decreases both the hydraulic conductivity and reactivity of CPB, thus improving its environmental performance. The improvement is largely attributed to enhanced binder hydration and self-consolidation which decrease the porosity of the CPB. Increasing the curing temperature was found to magnify the improvement of the CPB properties by inducing faster binder hydration. The findings from this study will undoubtedly inform the design of CPB structure with better mechanical stability and environmental performance.
26

Assessment of lime-treated clays under different environmental conditions

Ali, Hatim F.A. January 2019 (has links)
Natural soils in work-sites are sometimes detrimental to the construction of engineering projects. Problematic soils such as soft and expansive soils are a real source of concern to the long-term stability of structures if care is not taken. Expansive soils could generate immense distress due to their volume change in response to a slight change in their water content. On the other hand, soft soils are characterised by their low shear strength and poor workability. In earthwork, replacing these soils is sometimes economically and sustainably unjustifiable in particular if they can be stabilised to improve their behaviour. Several techniques have evolved to enable construction on problematic soils such as reinforcement using fibre and planar layers and piled reinforced embankments. Chemical treatment using, e.g. lime and/or cement is an alternative method to seize the volume change of swelling clays. The use of lime as a binding agent is becoming a popular method due to its abundant availability and cost-effectiveness. When mixed with swelling clays, lime enhances the mechanical properties, workability and reduces sensitivity to absorption and release of water. There is a consensus in the literature about the primary mechanisms, namely cation exchange, flocculation and pozzolanic reaction, which cause the changes in the soil characteristics after adding lime in the presence of water. The dispute is about whether these mechanisms occur in a sequential or synchronous manner. More precisely, the controversy concerns the formation of cementitious compounds in the pozzolanic reaction, whether it starts directly or after the cation exchange and flocculation are completed. The current study aims to monitor the signs of the formation of such compounds using a geotechnical approach. In this context, the effect of delayed compaction, lime content, mineralogy composition, curing time and environmental temperature on the properties of lime-treated clays were investigated. The compaction, swelling and permeability, and unconfind compression strength tests were chosen to evaluate such effect. In general, the results of the geotechnical approach have been characterised by their scattering. The sources of this dispersion are numerous and include sampling methods, pulverisation degree, mixing times and delay of compaction process, a pre-test temperature and humidity, differences in dry unit weight values, and testing methods. Therefore, in the current study, several precautions have been set to reduce the scattering in the results of such tests so that they can be used efficiently to monitor the evolution in the properties that are directly related to the formation and development of cementitious compounds. Four clays with different mineralogy compositions, covering a wide range of liquid limits, were chosen. The mechanical and hydraulic behaviour of such clays that had been treated by various concentrations of lime up to 25% at two ambient temperatures of 20 and 40oC were monitored for various curing times. The results indicated that the timing of the onset of changes in mechanical and hydraulic properties that are related to the formation of cementitious compounds depends on the mineralogy composition of treated clay and ambient temperature. Moreover, at a given temperature, the continuity of such changes in the characteristics of a given lime-treated clay depends on the lime availability.
27

Unconfined Compression Strength of Reinforced Clays with Carpet Waste Fibers

Mirzababaei, M., Miraftab, M., Mohamed, Mostafa H.A., McMahon, P. January 2013 (has links)
no / This paper presents results of a comprehensive investigation on the utilization of carpet waste fibers in reinforcement of clay soils. Effects of adding proportionate quantities of two different types of shredded carpet waste fibers to clay soils (i.e., 1, 3, and 5% by dry weight of the soil) were investigated and evaluated. The investigation was conducted on specimens prepared at their maximum dry unit weight and optimum moisture content, as well on specimens prepared at variable conditions of dry unit weight and moisture content. A comparison was also made on specimens prepared at the same fiber content by changing dry unit weight while moisture content was kept unchanged or by changing both dry unit weight and moisture content. The investigation revealed that inclusion of carpet waste fibers into clay soils prepared at the same dry unit weight can significantly enhance the unconfined compression strength (UCS), reduce postpeak strength loss, and change the failure behavior from brittle to ductile. The results also showed that the relative benefit of fibers to increase the UCS of the clay soils is highly dependent on initial dry unit weight and moisture content of the soil. Failure patterns were gradually transformed from the apparent classical failure for unreinforced soil specimens to barrel-shaped failures for reinforced specimens at 5% fiber content.
28

The effects of lime content and environmental temperature on the mechanical and hydraulic properties of extremely high plastic clays

Ali., H., Mohamed, Mostafa H.A. 25 April 2018 (has links)
Yes / This paper focuses on monitoring the evolution of lime-clay reactions using geotechnical parameters as a function of lime content and environmental temperature. Lime contents of 5, 7, 9, 11 and 13% by dry weight of expansive clay powder were added to prepare lime-clay specimens. The specimens were prepared at the same dry unit weight of 12.16 kN/m3 and moisture content of 40% except for tests aimed at the determination of dry unit weight as a function of mellowing period. Prepared specimens were mellowed or cured at two different ambient temperatures of 20 °C and 40 °C. Results attained from Unconfined Compressive Strength and permeability tests were employed to assess the impact of lime content on the mechanical and hydraulic properties of lime treated expansive clays. The results revealed that at the beginning, the rate of strength gain is remarkably fast for a particular period of time which is dependent on lime content. Furthermore, the strength gain on specimens cured at 40 °C is 8 times higher than that observed on specimens cured at 20 °C which highlights significant effect for the environmental temperature on accelerating the chemical reactions. Reduced dry unit weight due to increased resistance to compactability is observable with increasing lime content and higher environmental temperature. Accelerated pozzolanic reaction at higher environmental temperature resulted in permeability coefficient of specimens mellowed for 24 h at 40 °C to be higher than those mellowed at 20 °C. The results also highlighted that the permeability coefficient would be relatively stable when expansive clays were treated with small amounts of lime e.g. 5%.
29

Evaluation of low-quality recycled concrete pavement aggregates for subgrade soil stabilization

Tavakol, Masoumeh January 1900 (has links)
Doctor of Philosophy / Department of Civil Engineering / Mustaque A. Hossain / Stacey E. Kulesza / Recycled concrete aggregate (RCA) is the byproduct of the demolition of concrete structures and pavements. An estimated 140 million tons of concrete waste is produced annually in the United States, most of which ends up in landfills. The use of RCA to replace quarried aggregates in paving projects is one way to utilize these materials and alleviate concerns regarding this increasing waste stream. RCA usage prevents waste concrete disposal into landfills, resulting in more sustainable use of mineral aggregate sources, and may further reduce costs associated with paving projects. However, the inferior physical properties of RCA, such as the presence of recycled mortar, complicate the incorporation of RCA into new concrete mixtures. State highway agencies such as the Kansas Department of Transportation are facing further issues with RCA from D-cracked pavements, raising the question if D-cracked aggregates should be used in paving operations. No known work has evaluated the effect of RCA from D-cracked pavements in subgrade soil stabilization. This study stabilized a low-plasticity clay in Kansas using RCA and three stabilizing materials (lime, Class C fly ash, and a combination of Portland cement and fly ash). Candidate mixtures with varying proportions of chemical stabilizers and D-cracked aggregates were evaluated using the standard Proctor, unconfined compressive strength, linear shrinkage, and California Bearing Ratio tests. Microstructure characteristics of selected mixtures were explored using scanning electron microscopy (SEM) and energy dispersive X-ray tests. Laboratory test results indicated that RCA, in conjunction with all cementitious materials except lime, improved clay strength, stiffness, and shrinkage properties. SEM results indicated that RCA caused a low void space and a dense arrangement of soil particles. RCA effectively improved evaluated mixture properties when an adequate soil-RCA bond was reached using chemical agents. The long-term performance of full-depth flexible pavements with stabilized mixtures as subgrade was assessed in the AASHTOWare Pavement ME Design (commonly known as MEPDG) software. The life-cycle cost of flexible pavements with stabilized mixtures was estimated for a 40-year design period. Economic analysis results indicated that RCA was cost effective only if it was used with a combination of fly ash and Portland cement.
30

Estudo da fluência em geotêxteis através de ensaios não confinados convencionais e acelerados / Creep of geotextiles through conventional and accelerated uncofined tests

Baras, Luiz Claudio Schwarz 04 July 2001 (has links)
Este trabalho apresenta resultados de ensaios de fluência não confinada executados pelo modo convencional e acelerado. Foi possível avaliar alguns parâmetros que influenciam o fenômeno da fluência em geotêxteis não tecidos, e ainda comparar o comportamento de dois geotêxteis ensaiados, um de polipropileno e outro de poliéster. Construíram-se as curvas isócronas dos materiais estudados e as análises das mesmas mostram que os geotêxteis de poliéster sofrem menores reduções de rigidez quando submetidos a carregamentos constantes do que os geotêxteis de polipropileno, os resultados dos ensaios acelerados apresentam-se estaticamente compatíveis com os resultados convencionais, denotando a viabilidade do Stepped Isothermal Method (SIM) como ensaio de caracterização fluência não confinada para geotêxteis não tecidos. / This work presents results of conventional and accelerated unconfined creep tests. Some factors that influence the creep behavior of nonwoven geotextiles are evaluated. The performance of polypropylene and polyester geotextiles is also compared. Isochronous curves show that the polyester geotextiles have a smaller rigidity reduction when compared with the polypropylene geotextiles when submitted to constant loads. The results of the accelerated tests are statistically compatible with the results of conventional tests, indicating that the Stepped Isothermal Method is a feasible approach for characterizing the creep behavior of nonwoven geotextiles.

Page generated in 0.0344 seconds