• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 2
  • 1
  • Tagged with
  • 14
  • 14
  • 8
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Processing and analysis of airborne fullwaveform laser scanning data for the characterization of forest structure and fuel properties

Crespo Peremarch, Pablo 30 October 2020 (has links)
[ES] Esta tesis aborda el desarrollo de métodos de procesado y análisis de datos ALSFW para la caracterización de la estructura vertical del bosque y, en particular, del sotobosque. Para responder a este objetivo general, se establecieron seis objetivos específicos: En primer lugar, se analiza la influencia de la densidad de pulso, de los parámetros de voxelización (tamaño de vóxel y valor de asignación) y de los métodos de regresión sobre los valores de las métricas ALSFW y sobre la estimación de atributos de estructura del bosque. Para ello, se redujo aleatoriamente la densidad de pulsos y se modificaron los parámetros de voxelización, obteniendo los valores de las métricas ALSFW para las diferentes combinaciones de parámetros. Estas mismas métricas ALSFW se emplearon para la estimación de atributos de la estructura del bosque mediante diferentes métodos de regresión. En segundo lugar, se integran métodos de procesado y análisis de datos ALSFW en una nueva herramienta llamada WoLFeX (Waveform Lidar for Forestry eXtraction) que incluye los procesos de recorte, corrección radiométrica relativa, voxelización y extracción de métricas a partir de los datos ALSFW, así como nuevas métricas descriptoras del sotobosque. En tercer lugar, se evalúa la influencia del ángulo de escaneo utilizado en la adquisición de datos ALS y la corrección radiométrica en la extracción de métricas ALSFW y en la estimación de atributos de combustibilidad forestal. Para ello, se extrajeron métricas ALSFW con y sin corrección radiométrica relativa y empleando diferentes ángulos de escaneo. En cuarto lugar, se caracteriza la oclusión de la señal a lo largo de la estructura vertical del bosque empleando y comparando tres tipos diferentes de láser escáner (ALSFW, ALSD y láser escáner terrestre: TLS, por sus siglas en inglés), determinando así sus limitaciones en la detección de material vegetativo en dos ecosistemas forestales diferenciados: el boreal y el mediterráneo. Para cuantificar la oclusión de la señal a lo largo de la estructura vertical del bosque se propone un nuevo parámetro, la tasa de reducción del pulso, basada en el porcentaje de haces láser bloqueados antes de alcanzar una posición dada. En quinto lugar, se evalúa la forma en que se detectan y determinan las clases de densidad de sotobosque mediante los diferentes tipos de ALS. Se compararon los perfiles de distribución vertical en los estratos inferiores descritos por el ALSFW y el ALSD con respecto a los descritos por el TLS, utilizando este último como referencia. Asimismo, se determinaron las clases de densidad de sotobosque aplicando la curva Lorenz y el índice Gini a partir de los perfiles de distribución vertical descritos por ALSFW y ALSD. Finalmente, se aplican y evalúan las nuevas métricas ALSFW basadas en la voxelización, utilizando como referencia los atributos extraídos a partir del TLS, para estimar la altura, la cobertura y el volumen del sotobosque en un ecosistema mediterráneo. / [EN] This thesis addresses the development of ALSFW processing and analysis methods to characterize the vertical forest structure, in particular, the understory vegetation. To answer this overarching goal, a total of six specific objectives were established: Firstly, the influence of pulse density, voxel parameters (i.e., voxel size and assignation value) and regression methods on ALSFW metric values and on estimates of forest structure attributes are analyzed. To do this, pulse density was randomly reduced and voxel parameters modified, obtaining ALSFW metric values for the different parameter combinations. These ALSFW metrics were used to estimate forest structure attributes with different regression methods. Secondly, a set of ALSFW data processing and analysis methods are integrated in a new software named WoLFeX (Waveform Lidar for Forestry eXtraction), including clipping, relative radiometric correction, voxelization and ALSFW metric extraction, and proposing new metrics for understory vegetation. Thirdly, the influence of the scan angle of ALS data acquisition and radiometric correction on the extraction of ALSFW metrics and on modeling forest fuel attributes is assessed. To do this, ALSFW metrics were extracted applying and without applying relative radiometric correction and using different scan angles. Fourthly, signal occlusion is characterized along the vertical forest structure using and comparing three different laser scanning configurations (ALSFW, ALSD and terrestrial laser scanning: TLS), determining their limitations in the detection of vegetative material in two contrasted forest ecosystems: boreal and Mediterranean. To quantify signal occlusion along the vertical forest structure, a new parameter based on the percentage of laser beams blocked prior to reach a given location, the rate of pulse reduction, is proposed. Fifthly, the assessment of how understory vegetation density classes are detected and determined by different ALS configurations is done. Vertical distribution profiles at the lower strata described by ALSFW and ALSD are compared with those described by TLS as reference. Moreover, understory vegetation density classes are determined by applying the Lorenz curve and Gini index from the vertical distribution profiles described by ALSFW and ALSD. Finally, the new proposed voxel-based ALSFW metrics are applied and evaluated, using TLS-based attributes as a reference, to estimate understory height, cover and volume in a Mediterranean ecosystem. / [CA] Aquesta tesi aborda el desenvolupament de mètodes de processament i anàlisi de dades ALSFW per a la caracterització de l'estructura vertical del bosc i, en particular, del sotabosc. Per a respondre a aquest objectiu general, s'establiren sis objectius específics: En primer lloc, s'analitza la influència de la densitat de pols, dels paràmetres de voxelització (grandària de vóxel i valor d'assignació) i dels mètodes de regressió sobre els valors de les mètriques ALSFW i sobre l'estimació dels atributs d'estructura del bosc. Per a això, es reduí aleatòriament la densitat de polsos i es modificaren els paràmetres de voxelització, obtenint els valors de les mètriques ALSFW per a les diferents combinacions de paràmetres. Aquestes mètriques ALSFW s'empraren per a l'estimació d'atributs de l'estructura del bosc mitjançant diferents mètodes de regressió. En segon lloc, s'integraren mètodes de processament i d'anàlisi de dades ALSFW en una nova eina anomenada WoLFeX (Waveform Lidar for Forestry eXtraction) que inclou el processos de retallada, correcció radiomètrica relativa, voxelització i extracció de mètriques a partir de les dades ALSFW, així com noves mètriques descriptores del sotabosc. En tercer lloc, s'avalua la influència de l'angle de escaneig emprat en l'adquisició de les dades ALS i la correcció radiomètrica en l'extracció de mètriques ALSFW i en l'estimació d'atributs de combustibilitat forestal. Per a això, s'extragueren mètriques ALSFW amb i sense correcció radiomètrica relativa i emprant diferents angles d'escaneig. En quart lloc, es caracteritza l'oclusió del senyal al llarg de l'estructura vertical del bosc emprant i comparant tres tipus diferents de làser escàner (ALSFW, ALSD i làser escàner terrestre: TLS, per les seues sigles en anglès), determinant així les seues limitacions en la detecció de material vegetatiu en dos ecosistemes diferenciats: un boreal i un mediterrani. Per a quantificar l'oclusió del senyal al llarg de l'estructura vertical del bosc es proposa un nou paràmetre, la taxa de reducció del pols, basada en el percentatge de rajos làser bloquejats abans d'arribar a una posició donada. En cinquè lloc, s'avalua la manera en la qual es detecten i determinen les classes de densitat de sotabosc mitjançant els diferents tipus d'ALS. Es compararen els perfils de distribució vertical en estrats inferiors descrits per l'ALSFW i l'ALSD respecte als descrits pel TLS, emprant aquest últim com a referència. A més a més, es determinaren les classes de densitat de sotabosc aplicant la corba Lorenz i l'índex Gini a partir dels perfils de distribució vertical descrits per l'ALSFW i l'ALSD. Finalment, s'apliquen i avaluen les noves mètriques ALSFW basades en la voxelització, emprant com a referència els atributs extrets a partir del TLS, per a estimar l'alçada, la cobertura i el volum del sotabosc en un ecosistema mediterrani. / Crespo Peremarch, P. (2020). Processing and analysis of airborne fullwaveform laser scanning data for the characterization of forest structure and fuel properties [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/153715 / TESIS
12

Examination of airborne discrete-return lidar in prediction and identification of unique forest attributes

Wing, Brian M. 08 June 2012 (has links)
Airborne discrete-return lidar is an active remote sensing technology capable of obtaining accurate, fine-resolution three-dimensional measurements over large areas. Discrete-return lidar data produce three-dimensional object characterizations in the form of point clouds defined by precise x, y and z coordinates. The data also provide intensity values for each point that help quantify the reflectance and surface properties of intersected objects. These data features have proven to be useful for the characterization of many important forest attributes, such as standing tree biomass, height, density, and canopy cover, with new applications for the data currently accelerating. This dissertation explores three new applications for airborne discrete-return lidar data. The first application uses lidar-derived metrics to predict understory vegetation cover, which has been a difficult metric to predict using traditional explanatory variables. A new airborne lidar-derived metric, understory lidar cover density, created by filtering understory lidar points using intensity values, increased the coefficient of variation (R²) from non-lidar understory vegetation cover estimation models from 0.2-0.45 to 0.7-0.8. The method presented in this chapter provides the ability to accurately quantify understory vegetation cover (± 22%) at fine spatial resolutions over entire landscapes within the interior ponderosa pine forest type. In the second application, a new method for quantifying and locating snags using airborne discrete-return lidar is presented. The importance of snags in forest ecosystems and the inherent difficulties associated with their quantification has been well documented. A new semi-automated method using both 2D and 3D local-area lidar point filters focused on individual point spatial location and intensity information is used to identify points associated with snags and eliminate points associated with live trees. The end result is a stem map of individual snags across the landscape with height estimates for each snag. The overall detection rate for snags DBH ≥ 38 cm was 70.6% (standard error: ± 2.7%), with low commission error rates. This information can be used to: analyze the spatial distribution of snags over entire landscapes, provide a better understanding of wildlife snag use dynamics, create accurate snag density estimates, and assess achievement and usefulness of snag stocking standard requirements. In the third application, live above-ground biomass prediction models are created using three separate sets of lidar-derived metrics. Models are then compared using both model selection statistics and cross-validation. The three sets of lidar-derived metrics used in the study were: 1) a 'traditional' set created using the entire plot point cloud, 2) a 'live-tree' set created using a plot point cloud where points associated with dead trees were removed, and 3) a 'vegetation-intensity' set created using a plot point cloud containing points meeting predetermined intensity value criteria. The models using live-tree lidar-derived metrics produced the best results, reducing prediction variability by 4.3% over the traditional set in plots containing filtered dead tree points. The methods developed and presented for all three applications displayed promise in prediction or identification of unique forest attributes, improving our ability to quantify and characterize understory vegetation cover, snags, and live above ground biomass. This information can be used to provide useful information for forest management decisions and improve our understanding of forest ecosystem dynamics. Intensity information was useful for filtering point clouds and identifying lidar points associated with unique forest attributes (e.g., understory components, live and dead trees). These intensity filtering methods provide an enhanced framework for analyzing airborne lidar data in forest ecosystem applications. / Graduation date: 2013
13

Destination of Isotopic Nitrogen Fertilizer Under Varying Herbicide Regimes in a Mid-Rotation Loblolly Pine (Pinus taeda L.) Plantation in the Piedmont of Virginia, USA

Van-Spanje, Megan 24 May 2023 (has links)
Mid-rotation fertilization and vegetation control are some of the most common silvicultural treatments in loblolly pine (Pinus taeda L.) plantations in the southeastern United States. Competing vegetation is commonly thought to sequester fertilizer nitrogen (N) and reduce the potential growth response to a mid-rotation fertilization treatment. This experiment aims to identify what proportion of applied N fertilizer is retained in the crop tree pine foliage, and the degree to which understory vegetation is competing for this resource. Our mid-rotation loblolly pine plantation received an application of 15N fertilization (urea 365 kg/ha, at 46% N by weight, i.e. 168 kg/ha of N) and a portion of plots received an understory vegetation control (basal spray application of triclopyr; 13.6% active ingredient) treatment either before fertilization or not at all. One-year post-fertilization, 15N contents within pine foliage, leaf fall/leaf litter, forest floor, and soil were measured, as was competing vegetation presence. There was significant variation in applied nitrogen acquisition among the different ecosystem components measured, with 0-15 cm soils retaining a majority at 32-37% added 15N. Differences in fertilizer N acquisition in pine foliage between plots with and without understory vegetation control was marginally significant (p = 0.06) with pine foliage in plots without understory vegetation capturing greater 15N (4.3% greater). Red maple (Acer rubrum) and oak species (Quercus spp.) were the most common competitors but neither had a uniquely pronounced effect on pine nitrogen sequestration. My data indicate that increasing competition reduces fertilizer N foliar concentrations in crop pine trees but at a modest rate and equally across species groups. An unrefined threshold determining when fertilizer N capture in crop pine trees was affected was found at 3.1 m2/ha of competing vegetation basal area. This site will continue to be monitored over time to assess fertilizer N retention in loblolly pine each year after fertilization and evaluate the fertilizer N capture within competing vegetation. / Master of Science / Some of the most prevalent management practices for mid-rotation (age 15, i.e., roughly halfway through a crop cycle) loblolly pine (Pinus taeda L.) plantations in the southeastern United States are fertilization and vegetation control. Nitrogen (N) is consistently one of the most limiting factors to productivity. The addition of N via fertilization is therefore a common forestry practice. However, when a stand is fertilized, the added resource is partitioned and cycled throughout the ecosystem. It is presumed that the amount of fertilizer N obtained by crop trees in a plantation is dependent on the level of competing vegetation (i.e., weed-trees and shrubs) present on site. Controlling competing vegetation prior to fertilization may therefore be warranted under certain conditions. To date, the amount of competing vegetation where it begins to impact fertilizer uptake by the crop tree is unknown. This study aims to elucidate this competing vegetation threshold to better inform mid-rotation management of loblolly pine plantations. This study examined applied fertilizer N capture in ecosystem components with varying levels of understory vegetation, and found more fertilizer N in pine foliage when understory vegetation was completely removed prior to fertilization. No single understory hardwood weed species had a uniquely strong influence on crop tree productivity uptake. Plots that ranked in the upper third in competing vegetation presence did have significantly less foliar fertilizer N in the pine crop trees. Additional replication of this study would be necessary to determine a universal threshold of competing vegetation which would trigger the removal of competing vegetation prior to fertilization.
14

Overstory density and disturbance impacts on the resilience of coniferous forests of western Oregon

Neill, Andrew R. (Andrew Rhodes) 09 March 2012 (has links)
A trait based approach was used to assess impacts of overstory density and thinning on understory vegetation components related to wildlife habitat. The relationship between overstory basal area and understory vegetation for species grouped by traits, such as production of flowers, fleshy-fruit and palatable leaves, was characterized in thinned and unthinned stands at seven Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) forests in western Oregon six years following harvests. The ranges of overstory densities within thinned and unthinned stands represent gradients of resource availability and thinning disturbance. Lower overstory densities and thinnings were associated with improved ecosystem functions, specifically the provision of wildlife habitat, as evident by higher cover of flowering and fleshy-fruit and palatable leaf producing species. Greater cover of drought, fire and heat tolerant species in low density stands and after thinnings suggested that these ecosystem functions are more likely to be maintained under climate change conditions, indicating higher resilience. The response of specific functions and response types reflect the traits characteristic for each species group and the impact of these traits on sensitivity to resource availability and disturbances. Thus, the correlation between grouping criteria and the main gradients created by management activities can provide an indication of the expected vegetation response, and therefore the impact of management practices on resilience. / Graduation date: 2012

Page generated in 0.1124 seconds