Spelling suggestions: "subject:"directed""
1 |
Comparison of Routing and Network Coding in Group CommunicationsXu, Yangyang 24 March 2009 (has links)
In traditional communication networks, information is delivered as a sequence of packets from source to destination by routing through intermediate nodes which only store and forward those packets. Recent research shows that routing alone is not sufficient to achieve the maximum information transmission rate across a communication network [1]. Network coding is a currently researched topic in information theory that allows the nodes to generate output data by encoding their received data. Thus, nodes may mix the input packets together and send them out as fewer packets. Potential throughput benefit is the initial motivation of the research in network coding.
Group communications refers to many-to-many communication sessions where multiple sources multicast independent data to the same group of receivers. Researchers always treat group communications as a simple problem by adding a super source which is connected to all the sources with unbounded capacity links. However, it cannot control the fairness between different sources in this method. Additionally, the method may be incorrect in some scenarios. In this research, we will present an example to illustrate that and analyze the reason for that.
The maximum multicast throughput problem using routing only is NP-complete. Wu et al. introduced a greedy tree-packing algorithm based on Prim's algorithm as an alternate sub-optimal solution [2] . This algorithm is modified in this work for group communications problem with routing in undirected networks. The throughput benefit for network coding has been shown in directed networks. However, in undirected networks, researchers have only investigated the multiple unicast sessions problem and one multicast session problem. In most cases, network coding does not seem to yield any throughput benefit [3] [4]. Li et al. introduced a c-flow algorithm using linear programming to find the maximum throughput for one multicast session using network coding [3] . We adapted this algorithm for group communications with network coding in undirected networks to overcome the disadvantage of the traditional method. Both algorithms were simulated using MATLAB and their results were compared. Further, it is demonstrated that network coding does not have constant throughput benefit in undirected networks.
|
2 |
Computation And Analysis Of Spectra Of Large Undirected NetworksErdem, Ozge 01 June 2010 (has links) (PDF)
Many interacting complex systems in biology, in physics, in technology and social systems, can be represented in a form of large networks. These large networks are mathematically represented by graphs. A graph is represented usually by the adjacency or the Laplacian matrix. Important features of the underlying structure and dynamics of them
can be extracted from the analysis of the spectrum of the graphs. Spectral analysis of the so called normalized Laplacian of large networks became popular in the recent years. The Laplacian matrices of the empirical networks are in form of unstructured large sparse matrices. The aim of this thesis is the comparison of different eigenvalue solvers for large sparse symmetric matrices which arise from the graph theoretical epresentation of undirected networks. The spectrum of the
normalized Laplacian is in the interval [0 2] and the multiplicity of the eigenvalue 1 plays a particularly important role for the network analysis. Moreover, the spectral analysis of protein-protein interaction networks has revealed that these networks have a different distribution type than other model networks such as scale free networks. In this respect, the eigenvalue solvers implementing the well-known implicitly
restarted Arnoldi method, Lanczos method, Krylov-Schur and Jacobi Davidson methods are investigated. They exist as MATLAB routines and are included in some freely available packages. The performances of different eigenvalue solvers PEIG, AHBEIGS, IRBLEIGS, EIGIFP, LANEIG, JDQR, JDCG in MATLAB and the library SLEPc in C++ were tested for matrices of size between 100-13000 and are compared in
terms of accuracy and computing time. The accuracy of the eigenvalue solvers are validated for the Paley graphs with known eigenvalues and are compared for large empirical networks using the residual plots and spectral density plots are computed.
|
3 |
Computation And Analysis Of Spectra Of Large Networks With Directed GraphsSariaydin, Ayse 01 June 2010 (has links) (PDF)
Analysis of large networks in biology, science, technology and social systems have become very popular recently. These networks are mathematically represented as graphs. The task is then to extract relevant qualitative information about the empirical networks from the analysis of these graphs.
It was found that a graph can be conveniently represented by the spectrum of a suitable difference operator, the normalized graph Laplacian, which underlies diffusions and random walks on graphs. When applied to large networks, this requires computation of the spectrum of large matrices. The normalized Laplacian matrices representing large networks are usually sparse and unstructured.
The thesis consists in a systematic evaluation of the available eigenvalue solvers for nonsymmetric large normalized Laplacian matrices describing directed graphs of empirical networks. The methods include several Krylov subspace algorithms like implicitly restarted Arnoldi method, Krylov-Schur method and Jacobi-Davidson methods which are freely available as standard packages written in MATLAB or SLEPc, in the library written C++.
The normalized graph Laplacian as employed here is normalized such that its spectrum is confined to the range [0, 2]. The eigenvalue distribution plays an important role in network analysis. The numerical task is then to determine the whole spectrum with appropriate eigenvalue solvers. A comparison of the existing eigenvalue solvers is done with Paley digraphs with known eigenvalues and for citation networks in sizes 400, 1100 and 4500 by computing
the residuals.
|
4 |
Využití teorie grafů pro návrh a optimalizaci architektur datových sítí / Application of graph theory to the design and optimization data network architecturesŘímský, Adam January 2010 (has links)
This masters'sthesis deals with graph theory and utilization of this theory for design and optimization of data network structures. Introduction chapter describes graph theory in general view, i.e. fundamental terms used for graph description, graph distinguishing, etc. Next part describes graph algorithms, for example a shortest path finding. After this I write about actual routing protocols where the graph algorithms are used. Last but one part deals with queuing theory and final part describes practical presentation of using graph theory for design and optimization of data network structure in Matlab programme environment.
|
5 |
Estimating Dependence Structures with Gaussian Graphical Models : A Simulation Study in R / Beroendestruktur Skattning med Gaussianska Grafiska Modeller : En Simuleringsstudie i RAngelchev Shiryaev, Artem, Karlsson, Johan January 2021 (has links)
Graphical models are powerful tools when estimating complex dependence structures among large sets of data. This thesis restricts the scope to undirected Gaussian graphical models. An initial predefined sparse precision matrix was specified to generate multivariate normally distributed data. Utilizing the generated data, a simulation study was conducted reviewing accuracy, sensitivity and specificity of the estimated precision matrix. The graphical LASSO was applied using four different packages available in R with seven selection criteria's for estimating the tuning parameter. The findings are mostly in line with previous research. The graphical LASSO is generally faster and feasible in high dimensions, in contrast to stepwise model selection. A portion of the selection methods for estimating the optimal tuning parameter obtained the true network structure. The results provide an estimate of how well each model obtains the true, predefined dependence structure as featured in our simulation. As the simulated data used in this thesis is merely an approximation of real-world data, one should not take the results as the only aspect of consideration when choosing a model.
|
6 |
Model selection for discrete Markov random fields on graphs / Seleção de modelos para campos aleatórios Markovianos discretos sobre grafosFrondana, Iara Moreira 28 June 2016 (has links)
In this thesis we propose to use a penalized maximum conditional likelihood criterion to estimate the graph of a general discrete Markov random field. We prove the almost sure convergence of the estimator of the graph in the case of a finite or countable infinite set of variables. Our method requires minimal assumptions on the probability distribution and contrary to other approaches in the literature, the usual positivity condition is not needed. We present several examples with a finite set of vertices and study the performance of the estimator on simulated data from theses examples. We also introduce an empirical procedure based on k-fold cross validation to select the best value of the constant in the estimators definition and show the application of this method in two real datasets. / Nesta tese propomos um critério de máxima verossimilhança penalizada para estimar o grafo de dependência condicional de um campo aleatório Markoviano discreto. Provamos a convergência quase certa do estimador do grafo no caso de um conjunto finito ou infinito enumerável de variáveis. Nosso método requer condições mínimas na distribuição de probabilidade e contrariamente a outras abordagens da literatura, a condição usual de positividade não é necessária. Introduzimos alguns exemplos com um conjunto finito de vértices e estudamos o desempenho do estimador em dados simulados desses exemplos. Também propomos um procedimento empírico baseado no método de validação cruzada para selecionar o melhor valor da constante na definição do estimador, e mostramos a aplicação deste procedimento em dois conjuntos de dados reais.
|
7 |
Design and Analysis of Low Complexity Network Coding SchemesTabatabaei-Yazdi, Seyed 2011 August 1900 (has links)
In classical network information theory, information packets are treated as commodities, and the nodes of the network are only allowed to duplicate and forward the packets. The new paradigm of network coding, which was introduced by Ahlswede et al., states that if the nodes are permitted to combine the information packets and forward a function of them, the throughput of the network can dramatically increase. In this dissertation we focused on the design and analysis of low complexity network coding schemes for different topologies of wired and wireless networks. In the first part we studied the routing capacity of wired networks. We provided a description of the routing capacity region in terms of a finite set of linear inequalities. We next used this result to study the routing capacity region of undirected ring networks for two multimessage scenarios. Finally, we used new network coding bounds to prove the optimality of routing schemes in these two scenarios. In the second part, we studied node-constrained line and star networks. We derived the multiple multicast capacity region of node-constrained line networks based on a low complexity binary linear coding scheme. For star networks, we examined the multiple unicast problem and offered a linear coding scheme. Then we made a connection between the network coding in a node-constrained star network and the problem of index coding with side information. In the third part, we studied the linear deterministic model of relay networks (LDRN). We focused on a unicast session and derived a simple capacity-achieving transmission scheme. We obtained our scheme by a connection to the submodular flow problem through the application of tools from matroid theory and submodular optimization theory. We also offered polynomial-time algorithms for calculating the capacity of the network and the optimal coding scheme. In the final part, we considered the multicasting problem in an LDRN and proposed a new way to construct a coding scheme. Our construction is based on the notion of flow for a unicast session in the third part of this dissertation. We presented randomized and deterministic polynomial-time versions of our algorithm.
|
8 |
Nonparametric Learning in High DimensionsLiu, Han 01 December 2010 (has links)
This thesis develops flexible and principled nonparametric learning algorithms to explore, understand, and predict high dimensional and complex datasets. Such data appear frequently in modern scientific domains and lead to numerous important applications. For example, exploring high dimensional functional magnetic resonance imaging data helps us to better understand brain functionalities; inferring large-scale gene regulatory network is crucial for new drug design and development; detecting anomalies in high dimensional transaction databases is vital for corporate and government security.
Our main results include a rigorous theoretical framework and efficient nonparametric learning algorithms that exploit hidden structures to overcome the curse of dimensionality when analyzing massive high dimensional datasets. These algorithms have strong theoretical guarantees and provide high dimensional nonparametric recipes for many important learning tasks, ranging from unsupervised exploratory data analysis to supervised predictive modeling. In this thesis, we address three aspects:
1 Understanding the statistical theories of high dimensional nonparametric inference, including risk, estimation, and model selection consistency;
2 Designing new methods for different data-analysis tasks, including regression, classification, density estimation, graphical model learning, multi-task learning, spatial-temporal adaptive learning;
3 Demonstrating the usefulness of these methods in scientific applications, including functional genomics, cognitive neuroscience, and meteorology.
In the last part of this thesis, we also present the future vision of high dimensional and large-scale nonparametric inference.
|
9 |
Model selection for discrete Markov random fields on graphs / Seleção de modelos para campos aleatórios Markovianos discretos sobre grafosIara Moreira Frondana 28 June 2016 (has links)
In this thesis we propose to use a penalized maximum conditional likelihood criterion to estimate the graph of a general discrete Markov random field. We prove the almost sure convergence of the estimator of the graph in the case of a finite or countable infinite set of variables. Our method requires minimal assumptions on the probability distribution and contrary to other approaches in the literature, the usual positivity condition is not needed. We present several examples with a finite set of vertices and study the performance of the estimator on simulated data from theses examples. We also introduce an empirical procedure based on k-fold cross validation to select the best value of the constant in the estimators definition and show the application of this method in two real datasets. / Nesta tese propomos um critério de máxima verossimilhança penalizada para estimar o grafo de dependência condicional de um campo aleatório Markoviano discreto. Provamos a convergência quase certa do estimador do grafo no caso de um conjunto finito ou infinito enumerável de variáveis. Nosso método requer condições mínimas na distribuição de probabilidade e contrariamente a outras abordagens da literatura, a condição usual de positividade não é necessária. Introduzimos alguns exemplos com um conjunto finito de vértices e estudamos o desempenho do estimador em dados simulados desses exemplos. Também propomos um procedimento empírico baseado no método de validação cruzada para selecionar o melhor valor da constante na definição do estimador, e mostramos a aplicação deste procedimento em dois conjuntos de dados reais.
|
10 |
Graphical representation of independence structuresSadeghi, Kayvan January 2012 (has links)
In this thesis we describe subclasses of a class of graphs with three types of edges, called loopless mixed graphs (LMGs). The class of LMGs contains almost all known classes of graphs used in the literature of graphical Markov models. We focus in particular on the subclass of ribbonless graphs (RGs), which as special cases include undirected graphs, bidirected graphs, and directed acyclic graphs, as well as ancestral graphs and summary graphs. We define a unifying interpretation of independence structure for LMGs and pairwise and global Markov properties for RGs, discuss their maximality, and, in particular, prove the equivalence of pairwise and global Markov properties for graphoids defined over the nodes of RGs. Three subclasses of LMGs (MC, summary, and ancestral graphs) capture the modified independence model after marginalisation over unobserved variables and conditioning on selection variables of variables satisfying independence restrictions represented by a directed acyclic graph (DAG). We derive algorithms to generate these graphs from a given DAG or from a graph of a specific subclass, and we study the relationships between these classes of graphs. Finally, a manual and codes are provided that explain methods and functions in R for implementing and generating various graphs studied in this thesis.
|
Page generated in 0.0411 seconds