• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 110
  • 24
  • 16
  • 11
  • 8
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 252
  • 252
  • 252
  • 103
  • 67
  • 44
  • 42
  • 41
  • 38
  • 38
  • 29
  • 29
  • 26
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Hybrid qualitative state plan problem and mission planning with UAVs / Planejamento ótimo de missões para veículos aéreos não tripulados

Márcio da Silva Arantes 11 August 2017 (has links)
This paper aims to present the thesis developed in the Doctoral Programin Computer Science and Computational Mathematics of the ICMC/USP. The thesis theme seeks to advance the state of the art by solving the problems of scalability and representation present in mission planning algorithms for Unmanned Aerial Vehicle (UAV). Techniques based on mathematical programming and evolutionary computation are proposed. Articles have been published, submitted or they are in final stages of preparation.These studies report the most significant advances in the representation and scalability of this problem. Mission planners worked on the thesis deal with stochastic problems in non-convex environments,where collision risks or failures in mission planning are treated and limited to a tolerated value. The advances in the representation allowed to solve violations in the risks present in the original literature modeling, besides making the models more realistic when incorporating aspects such as effects of the air resistance. Efficient mathematical modeling techniques allowed to advance from a Mixed Integer Nonlinear Programming (MINLP) model, originally proposed in the literature, to a Mixed Integer Linear Programming (MILP) problem. Modeling as a MILP led to problem solving more efficiently through the branch-and-algorithm. The proposed new representations resulted in improvements from scalability, solving more complex problems within a shorter computational time. In addition, advances in scalability are even more effective when techniques combining mathematical programming and metaheuristics have been applied to the problem. / O presente documento tem por objetivo apresentar a tese desenvolvida no Programade Doutorado em Ciência da Computação e Matemática Computacional do ICMC/USP. O tema da tese busca avançar o estado da arte ao resolver os problemas de escalabilidade e representação presentes em algoritmos de planejamento para missões com Veículos Aéreos Não Tripulados (VANTs). Técnicas baseadas em programação matemática e computação evolutiva são propostas. Artigos foram publicados, submetidos ou se encontram em fase final de elaboração. Esses trabalhos reportamos avanços mais significativos obtidos na representação e escalabilidade deste problema.Os planejadores de missão trabalhados na tese lidam com problemas estocásticos em ambientes não convexos, onde os riscos de colisão ou falhas no planejamento da missão são tratados e limitados a um valor tolerado. Os avanços na representação permitiram solucionar violações nos riscos presentes na modelagem original, além de tornar os modelos mais realistas ao incorporar aspectos como efeitos da resistência do ar. Para isso, técnicas eficientes de modelagem matemática permitiram avançar de um modelo de Programação Não-Linear Inteira Mista(PNLIM), originalmente proposto na literatura, para um problema de Programação Linear Inteira Mista (PLIM). A modelagem como um PLIM levou à resolução do problema de forma mais eficiente através do algoritmo branch-and-cut. As novas representações propostas resultaram em melhorias na escalabilidade, solucionando problemas mais complexos em um tempo computacional menor.Além disso,os avanços em escalabilidade mostraram-se mais efetivos quando técnicas combinando programação matemática e metaheurísticas foram aplicadas ao problema.
172

Adaptive Two-Stage Edge-Centric Architecture for Deeply-Learned Embedded Real-Time Target Classification in Aerospace Sense-and-Avoidance Applications

Speranza, Nicholas A. 26 May 2021 (has links)
No description available.
173

A systematic literature review on drones’ application in last-mile delivery.

Persson, Emil January 2021 (has links)
In recent years, companies such as Amazon and DHL have started to develop alternative last-mile delivery options because of the growing trend in e-commerce. Last-mile deliveries refer to the terminal to customer deliveries and have become increasingly challenging to manage, as traffic congestions in cities has risen. Therefore, companies have begun searching for alternative delivery methods, such as autonomous drones or unmanned aerial vehicles (UAV). The purpose of this thesis is to investigate drones in the current literature on last-mile delivery. First, by conducting a systematic literature review on the current literature available in two major databases. Second, by analyzing the collected literature sample and presenting it through a descriptive analysis focusing on bibliometrics and a thematic analysis that identifies emerging themes for drivers for drones’ application in last-mile delivery, barriers for drones’ application in last-mile delivery, and approaches for implementing drones in last-mile delivery.                        Drones’ application in last-mile delivery has the potential to reduce cost, decrease delivery time, reduce emissions, and reduce energy consumption. However, barriers that hinder the implementation, such as governmental regulations, need further consideration for the implementation to occur. Some evident gaps can be found related to the barriers. Both managers and researchers might find the thesis useful, as it provides a holistic view on the subject, with theoretical, managerial, and societal implications being presented.
174

Zpracování snímků pořízených pomocí UAV / Processing of images taken from UAV

Ptáček, Ondřej January 2014 (has links)
This diploma thesis deals with the processing and evaluation of the pictures taken by unmanned aerial vehicles - UAV. The introductory part is devoted to the definition, use, applications and types of UAV especially for photogrammetric purposes. Also the software equipment is described, including a description and examples of several types of possible outcomes. Further the measurements, computational works and process of elaboration in used software programs are described. Achieved outcomes of elaboration are also presented. In conclusion, the overall evaluation and assessment of the results of measurement is done of set of points.
175

Identifikace aerodynamických charakteristik atmosférického letadla z výsledků letových měření / Aerodynamic Characteristics Identification of Atmospheric Airplane from Flight Measurement Results

Zikmund, Pavel Unknown Date (has links)
The thesis deals with aerodynamic characteristics identification from flight measurement. The topic is part of flight mechanic – handling qualities. The first theoretic part consists of three identification methods description: Error equation method, Output error method and Filter error method. Mathematical model of an airplane is defined and restricted to the motion with 3 degree of freedom. There is also introduced simulation of flight measurement for identification software validation. Practical part is focused on experiment preparation, execution and evaluation. The airplane VUT 700 Specto had been chosen to carry out flight tests. The airplane was modified to the new electric powered VUT 700e Specto after first measurement flights with combustion engine. Data record from on-board measurement unit was completed by telemetric data from autopilot and remote control system. Flight tests were carried out in stabilised mode of autopilot in symmetric flight. The results were confronted with analytical analysis results and DATCOM+ software parameter estimation.
176

Identifikace aerodynamických charakteristik atmosférického letadla z výsledků letových měření / Aerodynamic Characteristics Identification of Atmospheric Airplane from Flight Measurement Results

Zikmund, Pavel January 2013 (has links)
The thesis deals with aerodynamic characteristics identification from flight measurement. The topic is part of flight mechanic – handling qualities. The first theoretic part consists of three identification methods description: Error equation method, Output error method and Filter error method. Mathematical model of an airplane is defined and restricted to the motion with 3 degree of freedom. There is also introduced simulation of flight measurement for identification software validation. Practical part is focused on experiment preparation, execution and evaluation. The airplane VUT 700 Specto had been chosen to carry out flight tests. The airplane was modified to the new electric powered VUT 700e Specto after first measurement flights with combustion engine. Data record from on-board measurement unit was completed by telemetric data from autopilot and remote control system. Flight tests were carried out in stabilised mode of autopilot in symmetric flight. The results were confronted with analytical analysis results and DATCOM+ software parameter estimation.
177

Stereo vision-based system for detection, track and capture of intruder flying drones

Maria Nieves Brunet Avalos (8800964) 06 May 2020 (has links)
<div>In this thesis, the design and implementation of an autonomous system that will equip a multi-rotor unmanned aerial vehicle (UAV) for visual detection and tracking of other UAVs is presented. The results from detection and tracking are used for real-time motion planning.</div><div><br></div><div>The goal is to effectively detect unwanted UAVs, track them and finally capture them with a net. Having a net that traps the UAVs and enables dragging intruders to another location is of great importance, since these could be carrying dangerous loads.</div><div><br></div><div>The project consists of three main tasks: object detection using a stereo camera, video tracking using a Kalman filter based algorithm, and lastly executing an optimal flight plan to aim a net at the detected intruder UAV. The computer vision, motion tracking and planning algorithms are implemented as ROS nodes what makes them executable on a reduced size onboard computer that is installed on the aerial vehicle.</div><div><br></div><div>Previous work related to this project consists of either a UAV detection system with computationally heavy algorithms or a tracking algorithm that does not include information about the dynamics of the UAVs. For the capture methods, previous ideas do not consider autonomous decisions or an optimized method to guarantee capture. In this thesis, these three aspects are considered to develop a simple solution that can be mounted on any commercially available UAV.</div>
178

Evaluating Multi-Uav System with Text to Spech for Sitational Awarness and Workload

Lindgren, Viktor January 2021 (has links)
With improvements to miniaturization technologies, the ratio between operators required per UAV has become increasingly smaller at the cost of increased workload. Workload is an important factor to consider when designing the multi-UAV systems of tomorrow as too much workload may decrease an operator's performance. This study proposes the use of text to speech combined with an emphasis on a single screen design as a way of improving situational awareness and perceived workload. A controlled experiment consisting of 18 participants was conducted inside a simulator. Their situational awareness and perceived workload was measured using SAGAT and NASA-TLX respectively. The results show that the use of text to speech lead to a decrease in situational awareness for all elements inside the graphical user interface that were not directly handled by a text to speech event. All of the NASA-TLX measurements showed an improvement in perceived workload except for physical demand. Overall an improvement of perceived workload was observed when text to speech was in use.
179

APPLYING UAVS TO SUPPORT THE SAFETY IN AUTONOMOUS OPERATED OPEN SURFACE MINES

Hamren, Rasmus January 2021 (has links)
Unmanned aerial vehicle (UAV) is an expanding interest in numerous industries for various applications. Increasing development of UAVs is happening worldwide, where various sensor attachments and functions are being added. The multi-function UAV can be used within areas where they have not been managed before. Because of their accessibility, cheap purchase, and easy-to-use, they replace expensive systems such as helicopters- and airplane-surveillance. UAV are also being applied into surveillance, combing object detection to video-surveillance and mobility to finding an object from the air without interfering with vehicles or humans ground. In this thesis, we solve the problem of using UAV on autonomous sites, finding an object and critical situation, support autonomous site operators with an extra safety layer from UAVs camera. After finding an object on such a site, uses GPS-coordinates from the UAV to see and place the detected object on the site onto a gridmap, leaving a coordinate-map to the operator to see where the objects are and see if the critical situation can occur. Directly under the object detection, reporting critical situations can be done because of safety-distance-circle leaving warnings if objects come to close to each other. However, the system itself only supports the operator with extra safety and warnings, leaving the operator with the choice of pressing emergency stop or not. Object detection uses You only look once (YOLO) as main object detection Neural Network (NN), mixed with edge-detection for gaining accuracy during bird-eye-views and motion-detection for supporting finding all object that is moving on-site, even if UAV cannot find all the objects on site. Result proofs that the UAV-surveillance on autonomous site is an excellent way to add extra safety on-site if the operator is out of focus or finding objects on-site before startup since the operator can fly the UAV around the site, leaving an extra-safety-layer of finding humans on-site before startup. Also, moving the UAV to a specific position, where extra safety is needed, informing the operator to limit autonomous vehicles speed around that area because of humans operation on site. The use of single object detection limits the effects but gathered object detection methods lead to a promising result while printing those objects onto a global positions system (GPS) map has proposed a new field to study. It leaves the operator with a viewable interface outside of object detection libraries.
180

Quantitative thermal performance assessment of building envelopes – emergent practices and infrared thermography

Mahmoodzadeh, Milad 25 January 2022 (has links)
Since many buildings in Canada were built prior to the advent of national and provincial energy codes and standards, quantifying building envelope thermal performance in existing buildings is an important step in identifying retrofit opportunities. Due to the lack of building codes or standards for existing buildings in Canada, development of a rapid and robust quantitative approach to evaluate and rank buildings for vertical envelope retrofits is required. Hence, this dissertation sought to develop quantitative approaches to evaluate existing building envelope thermal performance in Canada and beyond. Following current professional practices, in Chapter 1, a comprehensive study was conducted on 49 campus buildings at the University of Victoria (UVic) to evaluate potential energy savings from vertical envelope retrofits, and to further validate those savings through more detailed energy models and parametric analyses for a subset of buildings. To this end, the thermal performance of a building envelope was quantified based on its heat loss coefficient (UA), obtained from multiplying its surface area (A) by its thermal transmittance (U-value). Heat loss calculations were used as a metric to inform envelope rehabilitation prioritization, while considering other data such as age and physical condition in parallel. Archetype energy models for selected buildings were used to evaluate the impacts of envelope retrofits on energy and GHG savings. The outcomes of this study allowed the University to weigh the benefits of improved energy performance from envelope retrofits against associated capital cost expenditures. Also, the implemented methodology and studied parameters unveiled a new horizon in evaluating the thermal performance of existing building envelopes in Canada, where a building code for existing buildings has not yet been established. Considering the economic findings of the envelope retrofits studied, it was concluded that in the absence of an existing building energy code, the University would likely require additional incentives, such as higher utility costs, higher carbon taxes, or qualifying for utility incentive programs to justify improving existing building envelope performance on the basis of energy only. The strength of the proposed methodology in Chapter 1 was in its balance of effort and ultimate decision-making utility, where reasonable thermal bridging approximations based on simulation models for existing buildings can yield data accurate enough to inform a ranking exercise on a large breadth of subject buildings. However, since numerical models do not consider degradation of building materials, real moisture content, and errors associated with manufacturing and installation, actual building envelope thermal performance differs from 3D simulation models. To study this limitation, in-situ thermal assessments of building envelopes were performed to quantify their actual thermal performances. To this end, Chapters 2 to 4 of this dissertation attempted to determine the viability of an external infrared thermography (IRT) survey technique for quantification of heat losses through the opaque building envelope, and also explores its potential application in identifying and comparing sources of air leakage. The experiments were performed on wood-framed wall assemblies commonly used in Canada due to growing interest among designers, builders, and governments to encourage the use of wood as a building material. In these studies, (Chapter 2 to Chapter 4), thermal transmittances (U-values) of wall assemblies were estimated with external IRT and compared with 3D computer simulations. Furthermore, the impact of the accuracy of U-values estimated with IRT on the deviation of energy simulation outputs with metered data was examined. Finally, a novel relative quantitative infrared index (IRI) was proposed as a means to facilitate rapid evaluation and subsequent ranking of building envelope thermal performance. From the experiments in Chapters 2 & 3, it was found that the U-values obtained with IRT were comparable with simulated values suggesting IRT can be a reliable tool for estimating the thermal performance of wood-framed wall assemblies. Results also demonstrated that thermal imaging artefacts including nonlinear characteristics of infrared (IR) camera focal array, a.k.a. non-uniformity corrections (NUC) and vignetting could have a substantial influence on the accuracy of results, in particular energy model outputs. This limitation was resolved by introducing a practical approach where thermal images were taken from different incident angle. Overall, IRI was found to be a reliable metric for relative quantitative comparison of building envelope thermal performance regardless of boundary conditions. Moreover, outcomes of the IRT air leakage study in Chapter 4 indicated that combined qualitative and quantitative IRT approaches could potentially be implemented by practitioners to identify sources of air leakage and thermal bridges in buildings and compare their relative severity. Since blower door testing is gradually being introduced as a building code requirement to measure building envelope airtightness in an increasing number of Canadian jurisdictions, performing IRT simultaneously is potentially valuable exercise in this context. Ultimately, the methodologies outlined in Chapters 2 to 4 can help decision-makers to characterize building envelope retrofits from a performance perspective, and potentially serve as a basis for governments to develop policies to improve existing building energy performance. The methodologies in Chapters 2 to 4 prompted opportunities to utilize the emergent technology of small unmanned aerial vehicles (UAVs) equipped with an infrared camera for quick thermal assessments of building envelopes. The last chapter of this dissertation, Chapter 5, outlines advantages and limitations of aerial IRT (UAV-IRT) surveys compared to conventional stationary IRT. Furthermore, a set of best practices for UAV-IRT were presented to minimize dynamic measurement uncertainty. It was concluded that with the current IR camera technology, aerial surveys for quantitative thermal assessment of building envelope are not as accurate as with conventional infrared thermography; further investigations by manufacturers and researchers are recommended. / Graduate

Page generated in 0.0878 seconds