• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 78
  • 65
  • 37
  • 31
  • 29
  • 19
  • 18
  • 15
  • 13
  • 11
  • 11
  • 9
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Emerging biotechnology to detect weak and/or transient protein-protein interactions

Thibodeaux, Gabrielle Nina 30 April 2014 (has links)
Protein-protein interactions are of great importance to a number of essential biological processes including cell cycle regulation, cell-cell interactions, DNA replication, transcription and translation. Thus, an understanding of protein-protein interactions is critical for understanding many facets of cell function. Unfortunately, the tools and methods currently in use to identify and study protein-protein interactions focus largely on high affinity, stable interactions. However, the majority of the protein-protein interactions involved in regulatory processes have weak affinities and are transient in nature. Therefore, it is important to develop new biotechnology capable of detecting weak and/or transient protein-protein interactions in vivo. Here, we describe four new methods that allow for the identification and study of weak and/or transient protein-protein interactions in vivo. First, we developed a rapid method to convert Escherichia coli orthogonal tRNA/synthetase pairs into an orthogonal system for mammalian cells in order to site-specifically incorporate unnatural amino acids into any gene of interest using stop codon suppression. This method will allow the expression and purification of proteins that carry normally transient post-translational modifications. Second, we successfully employed site-specific unnatural amino acid incorporation to chemically cross-link a known homodimer, Sortase A, in vivo. Third, we developed a novel tetracycline repressor-based mammalian two-hybrid system and successfully detected homo- and hetero-dimers that are known to have weak binding constants. Finally, a synthetic antibody (termed a synbody) that binds weakly to the SH3 domain of the proto-oncogene Abelson tyrosine kinase was developed. The synbody can potentially be used as a first generation drug and/or biomarker. We hope that the methods developed in this dissertation will enable the scientific community to better understand weak/transient protein-protein interactions in vivo. / text
22

Rate and Accuracy of Bacterial Protein Synthesis with Natural and Unnatural Amino Acids

Ieong, Ka-Weng January 2014 (has links)
This thesis addresses different questions regarding the rate, efficiency, and accuracy of peptide bond formation with natural as well as unnatural amino acids: Which step is rate-limiting during peptide bond formation? How does the accuracy vary with different transfer RNAs (tRNAs) and codons and how is it relevant to the living cells? Does proofreading selection of codon reading occur in a single- or multi-step manner as theoretically suggested? How does the E. coli translation system discriminate unnatural amino acids? Based on that, how to improve the incorporation efficiencies of unnatural amino acids? Based on the study on pH dependence of peptide bond formation, we show that the rate of the chemistry of peptidyl transfer to aminoacyl-tRNA (AA-tRNA) Gly-tRNAGly or Pro-tRNAPro limits the rate of peptide bond formation at physiological pH 7.5, and this could possibly be true for peptidyl transfer to all natural AA-tRNAs at physiological condition. By studying the efficiency-accuracy trade-off for codon reading by seven AA-tRNA containing ternary complexes, we observe a large variation on the accuracy of initial codon selection and identify several error hot-spots. The maximal accuracy varied 400-fold from 200 to 84000 depending on the tRNA identity, the type and position of the mismatches. We also propose a proofreading mechanism that contains two irreversible steps in sequence. This could be highly relevant to the living cells in relation to maintaining both high accuracy and high efficiency in protein synthesis. Finally, we show that peptide bond formation with small and large non-N-alkylated L- unnatural amino acids proceed at rates similar to those with natural amino acids Phe and Ala on the ribosome. Interestingly, the large side chain of the bulky unnatural amino acid only weakens its binding for elongation factor Tu (EF-Tu) but not slows down peptidyl transfer on the ribosome. Our results also suggest that the efficiency of unnatural amino acid incorporation could be improved in general by increasing EF-Tu concentration, lowering the reaction temperature and / or using tRNA bodies with optimal affinities for EF-Tu in the translation system.
23

Site-directed spin-labelling of proteins for EPR spectroscopy : application to protein complexes and development of new methods for cysteine rich proteins

Bell, Stacey January 2016 (has links)
The work described in this thesis is an experimental study into the application of Electron Paramagnetic Resonance (EPR) Spectroscopy for the study of biological systems. Using a variety of methods of site-directed spin-labelling (SDSL), this thesis aims to explore long range structure in an assortment of recombinant and native proteins, and complexes thereof. The work described in this thesis covers all aspects of the work, from experimental design, molecular biology and cloning, protein expression and purification, as well as functional characterisation, and finally EPR distance measurements, data analysis and interpretation. Challenges and pitfalls will also be addressed. Chapters 1 and 2 introduce EPR spectroscopy, and its application in the study of long range structure in biological systems. The experimental techniques employed throughout this thesis are also introduced. Chapter 3 details an investigation into the complement C3b:factor H complex. This chapter addresses the challenges associated with the SDSL of cysteine rich proteins. Utilising hidden cysteine residues in native proteins for spin-labelling purposes will also be addressed. Chapter 4 looks at the interactions of the human myosin regulatory light chain (RLC) with cardiac myosin binding protein C (cMyBP-C). Optimisation of expression and purification protocols will be the focus, as well as addressing issues with protein solubility and spin labelling efficiencies. Chapter 5 explores the development of new methods of SDSL, for the specific labelling of cysteine rich proteins. The ability of Escherichia coli to read through the amber stop codon will be exploited for the incorporation of unnatural amino acids for labelling purposes, and novel spin labels, specific for labelling cysteine pairs tested in several model systems. Furthermore, native paramagnetic centres in recombinant proteins will be explored as potential labelling sites.
24

Method Development for Efficient Incorporation of Unnatural Amino Acids

Harris, Paul D. 04 1900 (has links)
The synthesis of proteins bearing unnatural amino acids has the potential to enhance and elucidate many processes in biochemistry and molecular biology. There are two primary methods for site specific unnatural amino acid incorporation, both of which use the cell’s native protein translating machinery: in vitro chemical acylation of suppressor tRNAs and the use of orthogonal amino acyl tRNA synthetases. Total chemical synthesis is theoretically possible, but current methods severely limit the maximum size of the product protein. In vivo orthogonal synthetase methods suffer from the high cost of the unnatural amino acid. In this thesis I sought to address this limitation by increasing cell density, first in shake flasks and then in a bioreactor in order to increase the yield of protein per amount of unnatural amino acid used. In a parallel project, I used the in vitro chemical acylation system to incorporate several unnatural amino acids, key among them the fluorophore BODIPYFL, with the aim of producing site specifically fluorescently labeled protein for single molecule FRET studies. I demonstrated successful incorporation of these amino acids into the trial protein GFP, although incorporation was not demonstrated in the final target, FEN1. This also served to confirm the effectiveness of a new procedure developed for chemical acylation.
25

Artificial Metalloenzymes through Chemical Modification of Engineered Host Proteins

Zernickel, Anna 10 1900 (has links)
With a few exceptions, all organisms are restricted to the 20 canonical amino acids for ribosomal protein biosynthesis. Addition of new amino acids to the genetic code can introduce novel functionalities to proteins, broadening the diversity of biochemical as well as chemical reactions and providing new tools to study protein structure, reactivity, dynamics and protein-protein-interactions. The site directed in vivo incorporation developed by P. G. SCHULTZ and coworkers, using an archeal orthogonal tRNA/aaRS (aminoacyl-tRNA synthase) pair, allows site-specifically insertion of a synthetic unnatural amino acid (UAA) by reprogramming the amber TAG stop codon. A variety of over 80 different UAAs can be introduced by this technique. However by now a very limited number can form kinetically stable bonds to late transition metals. This thesis aims to develop new catalytically active unnatural amino acids or strategies for a posttranslational modification of site-specific amino acids in order to achieve highly enantioselective metallorganic enzyme hybrids (MOEH). As a requirement a stable protein host has to be established, surviving the conditions for incorporation, posttranslational modification and the final catalytic reactions. mTFP* a fluorescent protein was genetically modified by excluding any exposed Cys, His and Met forming a variant mTFP*, which fulfills the required specifications. Posttranslational chemical modification of mTFP* allow the introduction of single site metal chelating moieties. For modification on exposed cysteines different maleiimid containing ligand structures were synthesized. In order to perform copper catalyzed click reactions, suitable unnatural amino acids (para-azido-(L)-phenylalanine, para-ethynyl-(L)-phenylalanine) were synthesized and a non-cytotoxic protocol was established. The triazole ring formed during this reaction may contribute as a moderate σ-donor/π-acceptor ligand to the metal binding site. Since the cell limits the incorporation of boronic acids, an aqueous protocol for Miyaura borylation using a highly active palladacycle catalyst was established and can be transferred to a selective borylation of proteins. It allows subsequent Suzuki cross coupling and therefore broadens the possibilities for chemical modifications and the establishment of new metalloenzymes. Different metal chelating amino acids were investigated, such as Hydrochinolin-Alanine, Bipyridyl-Alanine, Dipyridine-Lysines and phosphorous containing amino acids.
26

From Unnatural Amino Acid Incorporation to Artificial Metalloenzymes

Makki, Arwa 04 December 2016 (has links)
Studies and development of artificial metalloenzymes have developed into vibrant areas of research. It is expected that artificial metalloenzymes will be able to combine the best of enzymatic and homogenous catalysis, that is, a broad catalytic scope, high selectivity and activity under mild, aqueous conditions. Artificial metalloenzyme consist of a host protein and a newly introduced artificial metal center. The host protein merely functions as ligand controlling selectivity and augmenting reactivity, while the metal center determines the reactivity. Potential applications range from catalytic production of fine chemicals and feedstock to electron transfer utilization (e.g. fuel cells, water splitting) and medical research (e.g. metabolic screening). Particularly modern asymmetric synthesis is expected to benefit from a successful combination of the power of biocatalysis (substrate conversion via multi-step or cascade reactions, potentially immortal catalyst, unparalleled selectivity and optimization by evolutionary methods) with the versatility and mechanism based optimization methods of homogeneous catalysis. However, so far systems are either limited in structural diversity (biotin-avidin technology) or fail to deliver the selectivities expected (covalent approaches). This thesis explores a novel strategy based on the site-selective incorporation of unnatural, metal binding amino acids into a host protein. The unnatural amino acids can either serve directly as metal binding centers can be used as anchoring points for artificial metallo-cofactors. The identification expression, purification and modification of a suitable protein scaffolds is fundamental to successfully develop this field. Chapter 2 and 3 detail a rational approach leading to a highly engineered host protein. Starting with fluorescent proteins, which combine high thermal and pH stability, high expression yields, and fluorescence for ease of quantification and monitoring an efficient and fast purification protocol was developed first. The purification protocol uses a combination of heat precipitation and three-phase-partitioning (TPP). It provides high yield and purity without requiring any tag. Building on the favourable properties of fluorescent proteins, the non-metal binding, highly stable host-scaffold mTFP* was generated through rational design. The incorporation of artificial metal binding sites, the allowed the selective formation of artificial metalloenzymes, which show catalytic activity and moderat to good chiral induction in the Diels-Alder Cyclization and Friedl-Crafts Acylation Chapter 4 of the thesis describes the use of UAA incorporation to generate artificial metal binding sites. Computational studies and homology modelling successfully highlighted several positions in mTFP*, which are particularly suitable for UAA incorporation without any disruption of the protein structure. Application of a functional orthogonal aaRS/tRNA pair developed by P.G. Schultz and co-workers allowed the site-specific incorporation of UAAs in the host protein framework. Changes in fluorescence intensity revealed preferences of varieous UAAs for specific incorporations sites. The three UAAs, pIF, pAzF, and pEynF were incorporated into mTFP* in good yields, while pBF does only deliver low protein yields. A successfully established on-protein MIYAURA borylation reaction allows convert well-incorporated pIF into pBF circumventing the problem of low expression yields. Chapter 5 details the use of the azide-functionality of pAzF for the bioconjugation of artificial metal-binding cofactors through CuAAC. The triazole ring formed during this reaction serves as an additional moderate σ -donor/π –acceptor ligand of the metal binding site. We demonstrated the potential of site-specific modifications within the protein host with a versatile subset of artificial cofactors. Following transition metal binding, the newly created metal sites show catalytic activities that nature does not provide. The proof of concept study highlights the potential of the present mTFP* based catalysts in asymmetric Tsuji Trost allylation reactions and Diels-Alder cycloadditions. Dual anchoring of the cofactor lead to increased enantioselectivities, which is a direct result of a better-defined orientation of the catalytic center on the protein surface. Following the utilization of the CuAAC click reaction for the generation of artificial metalloenzymes, the last chapter of this thesis reports the development of a heterogeneous catalyst system for this reaction, which overcomes limitations of homogenous protocols. The recyclable core-shell structured Cu2O/Cu-nanowire catalyst is highly active, does not lead to protein precipitation, can be filtered off after the reaction and provides copper free bioconjugation products.
27

Protein Design and Engineering Using the Fluorescent Non-canonical Amino Acid L-(7-hydroxycoumarin-4-yl)ethylglycine

January 2020 (has links)
abstract: Proteins are, arguably, the most complicated molecular machines found in nature. From the receptor proteins that decorate the exterior of cell membranes to enzymes that catalyze the slowest of chemical reactions, proteins perform a wide variety of essential biological functions. A reductionist view of proteins as a macromolecular group, however, may hold that they simply interact with other chemical species. Notably, proteins interact with other proteins, other biological macromolecules, small molecules, and ions. This in turn makes proteins uniquely qualified for use technological use as sensors of said chemical species (biosensors). Several methods have been developed to convert proteins into biosensors. Many of these techniques take advantage of fluorescence spectroscopy because it is a fast, non-invasive, non-destructive and highly sensitive method that also allows for spatiotemporal control. This, however, requires that first a fluorophore be added to a target protein. Several methods for achieving this have been developed from large, genetically encoded autofluorescent protein tags, to labeling with small molecule fluorophores using bioorthogonal chemical handles, to genetically encoded fluorescent non-canonical amino acids (fNCAA). In recent years, the fNCAA, L-(7-hydroxycoumarin-4yl)ethylglycine (7-HCAA) has been used in to develop several types of biosensors. The dissertation I present here specifically addresses the use of the fNCAA L-(7-hydroxycoumarin-4-yl)ethylglycine (7-HCAA) in protein-based biosensors. I demonstrate 7-HCAA’s ability to act as a Förster resonance energy transfer (FRET) acceptor with tryptophan as the FRET donor in a single protein containing multiple tryptophans. I the describe efforts to elucidate—through both spectroscopic and structural characterization—interactions within a 7-HCAA containing protein that governs 7-HCAA fluorescence. Finally, I present a top-down computational design strategy for incorporating 7-HCAA into proteins that takes advantage of previously described interactions. These reports show the applicability of 7-HCAA and the wider class of fNCAAs as a whole for their use of rationally designed biosensors. / Dissertation/Thesis / Doctoral Dissertation Biochemistry 2020
28

Molecular Dynamic Simulation of Protein Devices and the Parameterization of Azides and Alkynes for Use in Unnatural Amino Acid Models

Smith, Addison Kyle 20 January 2021 (has links)
Proteins that have been modified by attaching them to a surface or to a polyethylene glycol (PEG) molecule can see many uses in therapeutics and diagnostics -- these unique proteins are called protein devices. Current techniques can perform these functionalizations at a specific residue on the protein, but what remains is identifying what happens to protein structure when mutated, and where to perform the attachment. Both of these issues can be examined using molecular dynamic (MD) simulations. Currently, simulations of the unnatural amino acid (uAA) mutations necessary for protein device functionalization cannot be executed, and full-protein screens of all possible protein device models have never been attempted. Results from this dissertation first employs a new model for simulating PEGylated protein devices building off of previous studies that explore where to attach functional groups. Next, many current assumptions in the community regarding ideal attachment sites are examined. Some of these factors include primary chain location, amino acid type, solvent accessibility, and secondary structure. The focus then turns to novel tertiary structure factors that could influence how well attachment locations affect overall protein device stability. The usefulness of each factor is analyzed to show what factors provided the best predictive power for a site's performance in the screen. A general heuristic is given that could aid in future screens of other protein devices to reduce compute time and quickly identify sites for experimental examination. To explore uAA mutation effects on protein structure, parameters are developed for linear moiety R-groups present in these novel amino acids. The CHARMM and CGenFF force fields currently lack parameters for most linear-angle molecular moieties. This work proposes a method that (1) develops CHARMM parameters for four small molecules that contain terminal azido and alkynyl groups using ffTK, (2) addresses linearity issues, and (3) validates ffTK results via in silico MD simulation. Dihedral analysis examines the linear-angle-containing dihedrals and compares methods for the moiety parameterization. Next, the small molecule parameters are combined with CGenFF to generate parameters for unnatural amino acid MD simulation in a protein. Finally, validation confirms the parameters derived in this work to appropriately simulate unnatural amino acids and small molecules with azido and alkynyl groups.
29

Molecular Dynamic Simulation of Protein Devices and the Parameterization of Azides and Alkynes for Use in Unnatural Amino Acid Models

Smith, Addison Kyle 20 January 2021 (has links)
Proteins that have been modified by attaching them to a surface or to a polyethylene glycol (PEG) molecule can see many uses in therapeutics and diagnostics -- these unique proteins are called protein devices. Current techniques can perform these functionalizations at a specific residue on the protein, but what remains is identifying what happens to protein structure when mutated, and where to perform the attachment. Both of these issues can be examined using molecular dynamic (MD) simulations. Currently, simulations of the unnatural amino acid (uAA) mutations necessary for protein device functionalization cannot be executed, and full-protein screens of all possible protein device models have never been attempted. Results from this dissertation first employs a new model for simulating PEGylated protein devices building off of previous studies that explore where to attach functional groups. Next, many current assumptions in the community regarding ideal attachment sites are examined. Some of these factors include primary chain location, amino acid type, solvent accessibility, and secondary structure. The focus then turns to novel tertiary structure factors that could influence how well attachment locations affect overall protein device stability. The usefulness of each factor is analyzed to show what factors provided the best predictive power for a site's performance in the screen. A general heuristic is given that could aid in future screens of other protein devices to reduce compute time and quickly identify sites for experimental examination. To explore uAA mutation effects on protein structure, parameters are developed for linear moiety R-groups present in these novel amino acids. The CHARMM and CGenFF force fields currently lack parameters for most linear-angle molecular moieties. This work proposes a method that (1) develops CHARMM parameters for four small molecules that contain terminal azido and alkynyl groups using ffTK, (2) addresses linearity issues, and (3) validates ffTK results via in silico MD simulation. Dihedral analysis examines the linear-angle-containing dihedrals and compares methods for the moiety parameterization. Next, the small molecule parameters are combined with CGenFF to generate parameters for unnatural amino acid MD simulation in a protein. Finally, validation confirms the parameters derived in this work to appropriately simulate unnatural amino acids and small molecules with azido and alkynyl groups.
30

Rational Metalloprotein Design for Energy Conversion Applications

January 2019 (has links)
abstract: Continuing and increasing reliance on fossil fuels to satisfy our population’s energy demands has encouraged the search for renewable carbon-free and carbon-neutral sources, such as hydrogen gas or CO2 reduction products. Inspired by nature, one of the objectives of this dissertation was to develop protein-based strategies that can be applied in the production of green fuels. The first project of this dissertation aimed at developing a controllable strategy to incorporate domains with different functions (e. g. catalytic sites, electron transfer modules, light absorbing subunits) into a single multicomponent system. This was accomplished through the rational design of 2,2’-bipyridine modified dimeric peptides that allowed their metal-directed oligomerization by forming tris(bipyridine) complexes, thus resulting in the formation of a hexameric assembly. Additionally, two different approaches to incorporate non-natural organometallic catalysts into protein matrix are discussed. First, cobalt protoporphyrin IX was incorporated into cytochrome b562 to produce a water-soluble proton and CO2 reduction catalyst that is active upon irradiation in the presence of a photosensitizer. The effect of the porphyrin axial ligands provided by the protein environment has been investigated by introducing mutations into the native scaffold, indicating that catalytic activity of proton reduction is dependent on axial coordination to the porphyrin. It is also shown that effects of the protein environment are not directly transferred when applied to other reactions, such as CO2 reduction. Inspired by the active site of [FeFe]-hydrogenases, the second approach is based on the stereoselective preparation of a novel amino acid bearing a 1,2-benzenedithiol side chain. This moiety can serve as an anchoring point for the introduction of metal complexes into protein matrices. By doing so, this strategy enables the study of protein interactions with non-natural cofactors and the effects that it may have on catalysis. The work developed herein lays a foundation for furthering the study of the use of proteins as suitable environments for tuning the activity of organometallic catalysts in aqueous conditions, and interfacing these systems with other supporting units into supramolecular assemblies. / Dissertation/Thesis / Doctoral Dissertation Chemistry 2019

Page generated in 0.1079 seconds