• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • Tagged with
  • 11
  • 11
  • 11
  • 9
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Deep Domain Fusion for Adaptive Image Classification

January 2019 (has links)
abstract: Endowing machines with the ability to understand digital images is a critical task for a host of high-impact applications, including pathology detection in radiographic imaging, autonomous vehicles, and assistive technology for the visually impaired. Computer vision systems rely on large corpora of annotated data in order to train task-specific visual recognition models. Despite significant advances made over the past decade, the fact remains collecting and annotating the data needed to successfully train a model is a prohibitively expensive endeavor. Moreover, these models are prone to rapid performance degradation when applied to data sampled from a different domain. Recent works in the development of deep adaptation networks seek to overcome these challenges by facilitating transfer learning between source and target domains. In parallel, the unification of dominant semi-supervised learning techniques has illustrated unprecedented potential for utilizing unlabeled data to train classification models in defiance of discouragingly meager sets of annotated data. In this thesis, a novel domain adaptation algorithm -- Domain Adaptive Fusion (DAF) -- is proposed, which encourages a domain-invariant linear relationship between the pixel-space of different domains and the prediction-space while being trained under a domain adversarial signal. The thoughtful combination of key components in unsupervised domain adaptation and semi-supervised learning enable DAF to effectively bridge the gap between source and target domains. Experiments performed on computer vision benchmark datasets for domain adaptation endorse the efficacy of this hybrid approach, outperforming all of the baseline architectures on most of the transfer tasks. / Dissertation/Thesis / Masters Thesis Computer Science 2019
2

Self-supervised Learning Methods for Vision-based Tasks

Turrisi Da Costa, Victor Guilherme 22 May 2024 (has links)
Dealing with large amounts of unlabeled data is a very challenging task. Recently, many different approaches have been proposed to leverage this data for training many machine learning models. Among them, self-supervised learning appears as an efficient solution capable of training powerful and generalizable models. More specifically, instead of relying on human-generated labels, it proposes training objectives that use ``labels'' generated from the data itself, either via data augmentation or by masking the data in some way and trying to reconstruct it. Apart from being able to train models from scratch, self-supervised methods can also be used in specific applications to further improve a pre-trained model. In this thesis, we propose to leverage self-supervised methods in novel ways to tackle different application scenarios. We present four published papers: an open-source library for self-supervised learning that is flexible, scalable, and easy to use; two papers tackling unsupervised domain adaptation in action recognition; and one paper on self-supervised learning for continual learning. The published papers highlight that self-supervised techniques can be leveraged for many scenarios, yielding state-of-the-art results.
3

Training Data Generation Framework For Machine-Learning Based Classifiers

McClintick, Kyle W 14 December 2018 (has links)
In this thesis, we propose a new framework for the generation of training data for machine learning techniques used for classification in communications applications. Machine learning-based signal classifiers do not generalize well when training data does not describe the underlying probability distribution of real signals. The simplest way to accomplish statistical similarity between training and testing data is to synthesize training data passed through a permutation of plausible forms of noise. To accomplish this, a framework is proposed that implements arbitrary channel conditions and baseband signals. A dataset generated using the framework is considered, and is shown to be appropriately sized by having $11\%$ lower entropy than state-of-the-art datasets. Furthermore, unsupervised domain adaptation can allow for powerful generalized training via deep feature transforms on unlabeled evaluation-time signals. A novel Deep Reconstruction-Classification Network (DRCN) application is introduced, which attempts to maintain near-peak signal classification accuracy despite dataset bias, or perturbations on testing data unforeseen in training. Together, feature transforms and diverse training data generated from the proposed framework, teaching a range of plausible noise, can train a deep neural net to classify signals well in many real-world scenarios despite unforeseen perturbations.
4

Distributionally robust unsupervised domain adaptation and its applications in 2D and 3D image analysis

Wang, Yibin 08 August 2023 (has links) (PDF)
Obtaining ground-truth label information from real-world data along with uncertainty quantification can be challenging or even infeasible. In the absence of labeled data for a certain task, unsupervised domain adaptation (UDA) techniques have shown great accomplishment by learning transferable knowledge from labeled source domain data and adapting it to unlabeled target domain data, yet uncertainties are still a big concern under domain shifts. Distributionally robust learning (DRL) is emerging as a high-potential technique for building reliable learning systems that are robust to distribution shifts. In this research, a distributionally robust unsupervised domain adaptation (DRUDA) method is proposed to enhance the machine learning model generalization ability under input space perturbations. The DRL-based UDA learning scheme is formulated as a min-max optimization problem by optimizing worst-case perturbations of the training source data. Our Wasserstein distributionally robust framework can reduce the shifts in the joint distributions across domains. The proposed DRUDA method has been tested on various benchmark datasets. In addition, a gradient mapping-guided explainable network (GMGENet) is proposed to analyze 3D medical images for extracapsular extension (ECE) identification. DRUDA-enhanced GMGENet is evaluated, and experimental results demonstrate that the proposed DRUDA improves transfer performance on target domains for the 3D image analysis task successfully. This research enhances the understanding of distributionally robust optimization in domain adaptation and is expected to advance the current unsupervised machine learning techniques.
5

On Online Unsupervised Domain Adaptation

Jihoon Moon (17121610) 10 October 2023 (has links)
<p dir="ltr">Recent advances in Artificial Intelligence (AI) have been markedly accelerated by the convergence of advances in Machine Learning (ML) and the exponential growth in computational power. Within this dynamic landscape, the concept of Domain Adaptation (DA) is dedicated to the seamless transference of knowledge across domains characterized by disparate data distributions. This thesis ventures into the challenging and nuanced terrain of Online Unsupervised Domain Adaptation (OUDA), where the unlabeled data stream arrives from the target domain incrementally and gradually diverges from the source domain. This thesis presents two innovative and complementary approaches -- a manifold-based approach and a time-domain-based approach -- to effectively tackle the intricate OUDA challenges.</p><p dir="ltr">The manifold-based approach seeks to address this gap by incorporating the domain alignment process in an incremental computation manner, and this novel technique leverages the computation of transformation matrices, based on the projection of both source and target data onto the Grassmann manifold. This projection aligns both domains by incrementally minimizing their dissimilarities, effectively ameliorating the divergence between the source and target data. This manifold-based approach capitalizes on the cumulative temporal information within the data stream, utilizing the Incremental Computation of Mean-Subspace (ICMS) technique. This technique efficiently computes the average subspace of target subspaces on the Grassmann manifold, adeptly capturing the evolving dynamics of the data distribution. The alignment process is further fortified by integrating the flow of target subspaces on the manifold. As the target data stream unfolds over time, this approach incorporates this information, yielding robust and adaptive transformation matrices. In addition, the efficient computation of the mean-subspace, closely aligned with the Karcher mean, attests to the computational feasibility of the manifold-based approach, thus, enabling real-time feedback computations for the OUDA problem.</p><p dir="ltr">The time-domain-based approach utilizes the cluster-wise information and its flow information from each time-step to accurately predict target labels in the incoming target data, propagate consistently the class labels to future incoming target data, and efficiently utilize the predicted labels in the target data together with the source data to incrementally update the learning model in a supervised-learning scenario. This process effectively transforms the OUDA problem into a supervised-learning scenario. We leverage a neural-network-based model to align target features, cluster them class-wise and extend them linearly from the origin of the latent space as the time-step progresses. This alignment process enables accurate predictions and target label propagation based on the trajectories of the target features. We achieve target label propagation through the novel Flow-based Hierarchical Optimal Transport (FHOT) method, which considers element-wise, cluster-wise, and distribution-wise correspondences of adjacent target features. The learning model is continuously updated with incoming target data and their predicted labels.</p><p dir="ltr">To comprehensively assess the impact and contributions of these two approaches to the OUDA problem, we conducted extensive experiments across diverse datasets. Our analysis covered each stage of the manifold-based approach, comparing its performance with prior methods in terms of classification accuracy and computational efficiency. The time-domain-based approach was validated through linear feature alignment in the latent space, resulting in accurate label predictions. Notably, the flow-based hierarchical optimal transport technique substantially enhanced classification accuracy, particularly with increasing time-steps. Furthermore, learning model updates using target data and predicted labels significantly improved classification accuracy.</p>
6

Domain Adaptation with a Classifier Trained by Robust Pseudo-Labels

Zhou, Yunke 07 January 2022 (has links)
With the rapid growth of computing power, approaches based on deep learning algorithms have achieved remarkable results in solving computer vision classification problems. These performance improvements are achieved by assuming the source and target data are collected from the same probability distribution. However, this assumption is usually too strict to be satisfied in many real-world applications, such as big data analysis, natural language processing, and computer vision classification problems. Because of distribution discrepancies between these domains, directly training the model on the source domain cannot be expected to generate satisfactory results on the target domain. Therefore, the problem of minimizing these data distribution discrepancies is the main challenge with which modern machine learning is now faced. To address this problem, domain adaptation (DA) aims to identify domain-invariant features between two different but related domains. This thesis proposes a state-of-the-art DA approach that overcomes the limitations of traditional DA methods. To capture fine-grained information for each category, I deploy centroid-to-centroid alignment to perform domain adaptation. An Exponential Moving Average strategy (EMA) is used to ensure we can form robust source and target centroids. A Gaussian-uniform mixture model is trained using an Expectation-Maximization (EM) algorithm to infer the robustness of the target pseudo-labels. With the help of target pseudo-labels, I propose two novel types of classifiers: (1) a target-oriented classifier (TO); and (2) a centroid-oriented classifier (CO). Extensive experiments show that these two classifiers exhibit superior performance on a variety of DA benchmarks when compared to standard baseline methods. / Master of Science / Approaches based on deep learning algorithms have achieved remarkable results in solving computer vision classification problems. These performance improvements are achieved by assuming the source and target data are collected from the same probability distribution; however, in many real-world applications, such as big data analysis, natural language processing, and computer vision classification problems, this assumption is usually too strict to be satisfied. For example, these two domains may have the same types of classes, but the objects in each category of these different domains can vary in shape, color, background, or even illumination. Because the probability distributions are slightly mismatched, directly training the model on one domain cannot achieve a satisfactory result on the other domain. To address this problem, domain adaptation (DA) aims to extract common features on both domains to transfer knowledge from one domain to another. In this thesis, I propose a state-of-the-art DA approach that overcomes the limitation of the traditional DA methods. To capture the low-level information of each category, I deploy centroid-to-centroid alignment to perform domain adaptation. An Exponential Moving Average (EMA) strategy is used to ensure the generation of robust centroids. A Gaussian-Uniform Mixture model is trained by using the Expectation-Maximization (EM) algorithm to infer the robustness of the target sample pseudo-labels. With the help of robust target pseudo-labels, I propose two novel types of classifiers: (1) a target-oriented classifier (TO); and (2) a centroid-oriented classifier (CO). Extensive experiments show that the proposed method outperforms traditional baseline methods on various DA benchmarks.
7

Online Unsupervised Domain Adaptation / Online-övervakad domänanpassning

Panagiotakopoulos, Theodoros January 2022 (has links)
Deep Learning models have seen great application in demanding tasks such as machine translation and autonomous driving. However, building such models has proved challenging, both from a computational perspective and due to the requirement of a plethora of annotated data. Moreover, when challenged on new situations or data distributions (target domain), those models may perform inadequately. Such examples are transitioning from one city to another, different weather situations, or changes in sunlight. Unsupervised Domain adaptation (UDA) exploits unlabelled data (easy access) to adapt models to new conditions or data distributions. Inspired by the fact that environmental changes happen gradually, we focus on Online UDA. Instead of directly adjusting a model to a demanding condition, we constantly perform minor adaptions to every slight change in the data, creating a soft transition from the current domain to the target one. To perform gradual adaptation, we utilized state-of-the-art semantic segmentation approaches on increasing rain intensities (25, 50, 75, 100, and 200mm of rain). We demonstrate that deep learning models can adapt substantially better to hard domains when exploiting intermediate ones. Moreover, we introduce a model switching mechanism that allows adjusting back to the source domain, after adaptation, without dropping performance. / Deep Learning-modeller har sett stor tillämpning i krävande uppgifter som maskinöversättning och autonom körning. Att bygga sådana modeller har dock visat sig vara utmanande, både ur ett beräkningsperspektiv och på grund av kravet på en uppsjö av kommenterade data. Dessutom, när de utmanas i nya situationer eller datadistributioner (måldomän), kan dessa modeller prestera otillräckligt. Sådana exempel är övergång från en stad till en annan, olika vädersituationer eller förändringar i solljus. Unsupervised Domain adaptation (UDA) utnyttjar omärkt data (enkel åtkomst) för att anpassa modeller till nya förhållanden eller datadistributioner. Inspirerade av att miljöförändringar sker gradvis, fokuserar vi på Online UDA. Istället för att direkt anpassa en modell till ett krävande tillstånd, gör vi ständigt mindre anpassningar till varje liten förändring i data, vilket skapar en mjuk övergång från den aktuella domänen till måldomänen. För att utföra gradvis anpassning använde vi toppmoderna semantiska segmenteringsmetoder för att öka regnintensiteten (25, 50, 75, 100 och 200 mm regn). Vi visar att modeller för djupinlärning kan anpassa sig betydligt bättre till hårda domäner när man utnyttjar mellanliggande. Dessutom introducerar vi en modellväxlingsmekanism som tillåter justering tillbaka till källdomänen, efter anpassning, utan att tappa prestanda.
8

Real-time Unsupervised Domain Adaptation / Oövervakad domänanpassning i realtid

Botet Colomer, Marc January 2023 (has links)
Machine learning systems have been demonstrated to be highly effective in various fields, such as in vision tasks for autonomous driving. However, the deployment of these systems poses a significant challenge in terms of ensuring their reliability and safety in diverse and dynamic environments. Online Unsupervised Domain Adaptation (UDA) aims to address the issue of continuous domain changes that may occur during deployment, such as sudden weather changes. Although these methods possess a remarkable ability to adapt to unseen domains, they are hindered by the high computational cost associated with constant adaptation, making them unsuitable for real-world applications that demand real-time performance. In this work, we focus on the challenging task of semantic segmentation. We present a framework for real-time domain adaptation that utilizes novel strategies to enable online adaptation at a rate of over 29 FPS on a single GPU. We propose a clever partial backpropagation in conjunction with a lightweight domain-shift detector that identifies the need for adaptation, adapting appropriately domain-specific hyperparameters to enhance performance. To validate our proposed framework, we conduct experiments in various storm scenarios using different rain intensities and evaluate our results in different domain shifts, such as fog visibility, and using the SHIFT dataset. Our results demonstrate that our framework achieves an optimal trade-off between accuracy and speed, surpassing state-of-the-art results, while the introduced strategies enable it to run more than six times faster at a minimal performance loss. / Maskininlärningssystem har visat sig vara mycket effektiva inom olika områden, till exempel i datorseende uppgifter för autonom körning. Spridning av dessa system utgör dock en betydande utmaning när det gäller att säkerställa deras tillförlitlighet och säkerhet i olika och dynamiska miljöer. Online Unsupervised Domain Adaptation (UDA) syftar till att behandla problemet med kontinuerliga domänändringar som kan inträffas under systemets användning, till exempel plötsliga väderförändringar. Även om dessa metoder har en anmärkningsvärd förmåga att anpassa sig till okända domäner, hindras de av den höga beräkningskostnaden som är förknippad med ständig nöndvändighet för anpassning, vilket gör dem olämpliga för verkliga tillämpningar som kräver realtidsprestanda. I detta avhandling fokuserar vi på utmanande uppgiften semantisk segmentering. Vi presenterar ett system för domänanpassning i realtid som använder nya strategier för att möjliggöra onlineanpassning med en hastighet av över 29 FPS på en enda GPU. Vi föreslår en smart partiell backpropagation i kombination med en lätt domänförskjutningsdetektor som identifierar nãr anpassning egentligen behövs, vilket kan konfigureras av domänspecifika hyperparametrar på lämpligt sätt för att förbättra prestandan. För att validera vårt föreslagna system genomför vi experiment i olika stormscenarier med olika regnintensiteter och utvärderar våra resultat i olika domänförskjutningar, såsom dimmasynlighet, och med hjälp av SHIFT-datauppsättningen. Våra resultat visar att vårt system uppnår en optimal avvägning mellan noggrannhet och hastighet, och överträffar toppmoderna resultat, medan de introducerade strategierna gör det möjligt att köra mer än sex gånger snabbare med minimal prestandaförlust.
9

Unsupervised Image Classification Using Domain Adaptation : Via the Second Order Statistic

Bjervig, Joel January 2022 (has links)
Framgången inom maskininlärning och djupinlärning beror till stor del på stora, annoterade dataset. Att tilldela etiketter till data är väldigt resurskrävande och kan till viss del undvikas genom att utnyttja datans statistiska egenskaper. En maskininlärningsmodell kan lära sig att klassificera bilder från en domän utifrån träningsexempel som innehåller bilder, samt etiketter som berättar vad bilder föreställer. Men vad gör man om datan inte har tilldelade etiketter? En maskininlärningsmodell som lär sig en uppgift utifrån annoterad data från en källdomän, kan med hjälp av information från måldomänen (som inte har tilldelade etiketter), anpassas till att prestera bättre på data från måldomänen. Forskningsområdet som studerar hur man anpassar och generaliserar en modell mellan två olika domäner heter domänanpassning, eller domain adaptation, på engelska.   Detta examensarbete är utfört på Scanias forskningsavdelning för autonom transport och handlar om hur modeller för bildklassificering som tränas på kamerabilder med etiketter, kan anpassas till att få ökad noggrannhet på ett dataset med LiDAR bilder, som inte har etiketter. Två metoder för domänanpassning har jämförts med varandra, samt en model tränad på kameradata genom övervakad inlärning utan domänanpassning. Alla metoder opererar på något vis med ett djupt faltningsnätverk (CNN) där uppgiften är att klassificera bilder utav bilar eller fotgängare. Kovariansen utav datan från käll- och måldomänen är det centrala måttet för domänanpassningsmetoderna i detta projekt. Den första metoden är en så kallad ytlig metod, där själva anpassningsmetoden inte ingår inuti den djupa arkitekturen av modellen, utan är ett mellansteg i processen. Den andra metoden förenar domänanpassningsmetoden med klassificeringen i den djupa arkitekturen. Den tredje modellen består endast utav faltningsnätverket, utan en metod för domänanpassning och används som referens.    Modellen som tränades på kamerabilderna utan en domänanpassningsmetod klassificerar LiDAR-bilderna med en noggrannhet på 63.80%, samtidigt som den ”ytliga” metoden når en noggrannhet på 74.67% och den djupa metoden presterar bäst med 80.73%. Resultaten visar att det är möjligt att anpassa en modell som tränas på data från källdomänen, till att få ökad klassificeringsnoggrannhet i måldomänen genom att använda kovariansen utav datan från de två domänerna. Den djupa metoden för domänanpassning tillåter även användandet utav andra statistiska mått som kan vara mer framgångsrika i att generalisera modellen, beroende på hur datan är fördelad. Överlägsenheten hos den djupa metoden antyder att domänanpassning med fördel kan bäddas in i den djupa arkitekturen så att modelparametrarna blir uppdaterade för att lära sig en mer robust representation utav måldomänen.
10

Unsupervised Domain Adaptation for 3D Object Detection Using Adversarial Adaptation : Learning Transferable LiDAR Features for a Delivery Robot / Icke-vägledd Domänanpassning för 3D-Objektigenkänning Genom Motspelaranpassning : Inlärning av Överförbara LiDAR-Drag för en Leveransrobot

Hansson, Mattias January 2023 (has links)
3D object detection is the task of detecting the full 3D pose of objects relative to an autonomous platform. It is an important perception system that can be used to plan actions according to the behavior of other dynamic objects in an environment. Due to the poor generalization of object detectors trained and tested on different datasets, this thesis concerns the utilization of unsupervised domain adaptation to train object detectors fit for mobile robotics without any labeled training data. To tackle the problem a novel approach Unsupervised Adversarial Domain Adaptation 3D (UADA3D) is presented to adapt LiDAR-based detectors, through drawing inspiration from the success of adversarial adaptation for 2D object detection in RGB images. The method adds learnable discriminator layers that discriminate between the features and bounding box predictions in the labeled source and unlabeled target data. The gradients are then reversed through gradient reversal layers during backpropagation to the base detector, which in turn learns to extract features that are similar between the domains in order to fool the discriminator. The method works for multi-class detection by simultaneous adaptation of all classes in an end-to-end trainable network and works for both point-based and voxel-based single-stage detectors. The results show that the proposed method increases detection scores for adaptation from dense to sparse point clouds and from simulated data toward the data of a mobile delivery robot, successfully handling the two relevant domain gaps given by differences in marginal and conditional probability distributions. / 3D-objektdetektering handlar om att upptäcka hela 3D-positionen för objekt i förhållande till en autonom plattform. Det är ett viktigt perceptionsystem som kan användas för att planera åtgärder baserat på beteendet hos andra dynamiska objekt i en miljö. På grund av den dåliga generaliseringen av objektavkännare som tränats och testats på olika datamängder, handlar denna avhandling om användningen av osuperviserad domänanpassning för att träna objektavkännare som är anpassade för mobila robotar utan några märkta träningsdata. För att tackla problemet presenteras ett nytt tillvägagångssätt Unsupervised Adversarial Domain Adaptation 3D (UADA3D) för att anpassa LiDAR-baserade avkännare, genom att ta inspiration från framgången av mospelaranpassning för 2D-objektdetektering i RGB-bilder. Metoden lägger till inlärbara diskriminatorlager som diskriminerar mellan egenskaperna och prediktionerna i annoterad käll- och oannoterad måldata. Gradienterna är sedan reverserae genom gradientreversering under bakåtpropagering till basdetekorn, som i sin tur lär sig att extrahera egenskaper som är liknande mellan domänerna för att lura diskriminatorn. Metoden fungerar för flerklassdetektering genom samtidig anpassning av alla klasser i ett end-to-end-träningsbart nätverk och fungerar för både punktbaserade och voxelbaserade enstegs detektorere. Resultaten visar att den föreslagna metoden förbättrar detektionen för domänanpassning från täta till glesa punktmoln och från simulerad data till data från en mobil leveransrobot, därmed hanterar metoden framgångsrikt de två relevanta domänskillnaderna i marginella- och betingade sannolikhetsfördelningar.

Page generated in 0.1018 seconds