Spelling suggestions: "subject:"mobila cobotar"" "subject:"mobila chobotar""
1 |
MPC based Caster Wheel Aware Motion Planning for Differential Drive Robots / MPC-baserad rörelseplanering med integrerat stöd för svängbara länkhjul avsedd för robotar med differentialdriftArrizabalaga Aguirregomezcorta, Jon January 2020 (has links)
The inherited rotation in a caster wheel allows movement in any direction, but pays at the expense of reaction torques. When implemented in a mobile robot, these forces have a negative impact in its performance. One approach is to restrict rotations on the spot by attaching a filter to the output of the motion planner. However, this formulation compromises the navigation’s completion in critical scenarios, such as parking, taking curves in narrow corridors or navigating at the presence of a high density of obstacles. Therefore, in this thesis we consider the influence of caster wheels in the motion planning stage, commonly presented as local planning. This work proposes a Model Predictive Control (MPC) based local planner that integrates the caster wheel physics into the motion planning stage. A caster wheel aware term is combined with a reference tracking based navigation, which leads to the formulation of the Caster Wheel Aware Local Planner (CWAWLP). Since this method requires knowing the caster wheel’s state and there is no sensor that provides this information, a caster wheel state observer is also formulated. In order to evaluate the impact of the caster wheel aware term, CWAWLP is compared to a Caster Wheel based Agnostic Local Planner (CWAGLP) and a Caster Wheel based Agnostic Planner Local Planner with Path Filter (CWPFLP). After running simulations for three case studies in a virtual framework, two experimental case studies are conducted in an intra-logistics robot. These are evaluated according to the navigation’s quality, motor torque usage and energy consumption. According to the patterns observed in the evaluation, CWAWLP covers a longer distance than CWAGLP wihout decreasing the navigation’s quality. At the same time, its motor torques are similar to the ones of CWPFLP. Therefore, CWAWLP is capable of considering caster wheel physics without sacrificing navigation capabilities. The formulated caster wheel aware term is compatible with any MPC based navigation algorithm and inherits the derivation of an observer capable of estimating caster wheel rotation angles and rolling speeds. Even if the caster wheel awareness has been implemented in a differential driven robot, this approach is also applicable to vehicles with an alternative drivetrain, such as car-like robots. / Den ärvda rotationen i ett hjul möjliggör rörelse i vilken riktning som helst, men fås på bekostnad av reaktionsmoment. När de implementeras i en mobil robot har dessa krafter en negativ inverkan på dess prestanda. Ett tillvägagångssätt är att begränsa rotationer på plats genom att applicera ett filter på rörelseplannerns utgång. Denna formulering komprometterar dock navigeringens slutförande i kritiska scenarier, såsom parkering, kurvor i smala korridorer eller navigering i närheten av höga hinder. Därför beaktar vi i denna avhandling påverkan av hjul på hjulplaneringen, som ofta presenteras som lokal planering. Detta arbete föreslår en Model Predictive Control (MPC) -baserad lokal planerare som integrerar svängbara länkhjuls fysik i rörelseplaneringsstadiet. En kugghjulmedveten term kombineras med en referensspårningsbaserad navigering, vilket leder till formuleringen av Caster Wheel Aware Local Planner (CWAWLP). Eftersom denna metod kräver kunskap om svängbara länkhjuls tillstånd och det inte finns någon sensor som ger denna information, formuleras också en hjulhjulstillståndsobservatör. För att utvärdera effekten av det medvetna begreppet svängbara änkhjul jämförs CWAWLP med en Caster Wheel-baserad Agnostic Local Planner (CWAGLP) och en Caster Wheel-baserad Agnostic Planner Local Planner with Path Filter (CWPFLP). Efter att ha kört simuleringar för tre fallstudier i ett virtuellt ramverk genomförs två experimentella fallstudier i en intra-logistikrobot. Dessa utvärderas enligt navigeringens kvalitet, vridmomentanvändning och energiförbrukning. Enligt de mönster som observerats i utvärderingen når CWAWLP ett längre avstånd än CWAGLP utan att sänka navigeringens kvalitet. Samtidigt liknar motorns vridmoment dem som CWPFLP. Därför kan CWAWLP ta hänsyn till svängbara länkhjuls fysik utan att offra navigationsfunktionerna. Den formulerade medhjulningsmedveten termen är kompatibel med vilken MPC-baserad navigationsalgoritm som helst och ärver härledningen av en observatör som kan uppskatta hjulets rotationsvinklar och rullningshastigheter. Även om hjulhjälpmedvetenheten har implementerats i en differentierad robot, är detta tillvägagångssätt också tillämpligt på fordon med ett alternativt drivsystem, såsom billiknande robotar.
|
2 |
Structure and Gait Optimizationof a Soft Quadrupedal Robot / Struktur- och gångoptimeringav en mjuk fyrbent robotDanelia, David, Fu, Shuo January 2021 (has links)
Quadrupedal robots are mobile robots with four limbs. Compared with other mobile robots, quadrupedal robots are more capable of moving in complex environment. Specifically, softquadrupedal robots have the limbs that are flexible and more compliant with the environmentthan that of rigid quadrupedal robots. This project is based on a previous work at KTH where a soft quadrupedal robot prototype was built. The first part of this project is to build a test rig, analyze the dynamics of the 3D printed soft continuum actuators and choose one configuration toachieve the best dynamics. The second part of this project is to build a soft quadrupedal robotand analyze the standing and walking performance. The mechanical and electrical structure ofthe robot are re-designed to reduce the weight. Furthermore, gait analyses are conducted toenable the robot to walk. Cost of transport is calculated to compare the efficiency of differentgaits. / Mobila robotar som har fyra lemmar kallas fyrbenta robotar. Jämfört med andra mobila robotarär fyrbenta robotar mer kapabla att röra sig i komplexa miljöer. Särskild de mjuka fyrbentarobotar, vars flexibla lemmar är mer kompatibla med miljön än dem av stela fyrbenta robotar. Det här projektet är baserat på ett tidigare arbete på KTH där prototypen av en mjuk fyrbentrobot byggdes. Den första delen av detta projekt är att bygga en provrigg, analysera dynamikenav det 3D-skrivna mjuka kontinuumställdon och välja den konfigurationen som har bästadynamiken. Den andra delen av detta projekt är att bygga en mjuk fyrbent robot och analyseradess stå- och gångprestation. Den mekaniska och elektriska strukturen av roboten designades omför att minska vikten. Vidare är gångs analyser genomförda för att möjliggöra robotens gång. Cost of transport (COT) är uträknat för att jämföra olika gångs effektivitet.
|
3 |
Att täcka en obekant yta med Spanning Tree Covering, Topologisk Täckande Algoritm, Trilobite / Covering an unknown area with Spanning Tree Covering, Topologisk Täckande Algoritm, TrilobiteCarlsson, Josefin, Johansson, Madeleine January 2005 (has links)
Det har blivit mer och mer vanligt med ny, datoriserad teknik i hemmen. Fler människor har ett allt stressigare liv och inte längre samma tid att ta hand om det egna hemmet. Behovet av en hjälpande hand med hushållsarbete har blivit allt större. Tänk själv att komma hem från jobbet eller skolan och så har golvet blivit skinande rent utan att Ni knappt har behövt göra någonting! Det finns idag flera olika robotar på marknaden för detta ändamål. En av dessa är den autonoma dammsugaren, som är det vi inriktat vår uppsats på. I huvudsak är uppsatsen inriktad på mjukvaran, som kan användas i en autonom dammsugare. Vi har valt att titta närmare på två stycken sökalgoritmer, som kan användas av autonoma mobila robotar, exempelvis en autonom dammsugare, som har i uppdrag att täcka en hel obekant yta. Dessa algoritmer är Spanning Tree Covering (STC) och ”A Topological Coverage Algorithm”, också kallad ”Landmark-based World Model” (fritt översatt till Topologisk Täckande Algoritm, TTA). Vi har också undersökt hur ett av Sveriges största märken på marknaden för autonoma dammsugare, nämligen Electrolux Trilobite ZA1, klarar sig i test. Vi har även analyserat testet med Trilobiten och jämfört detta med antaget beteende hos Trilobiten ifall den hade varit implementerad med sökalgoritmerna STC eller TTA. Hur fungerar sökalgoritmerna? Hur kan en autonom dammsugare hitta på en hel obekant yta? Hur beter sig Electrolux Trilobite ZA1? Täcker de alla en obekant yta? Är de effektiva?
|
4 |
Unsupervised Domain Adaptation for 3D Object Detection Using Adversarial Adaptation : Learning Transferable LiDAR Features for a Delivery Robot / Icke-vägledd Domänanpassning för 3D-Objektigenkänning Genom Motspelaranpassning : Inlärning av Överförbara LiDAR-Drag för en LeveransrobotHansson, Mattias January 2023 (has links)
3D object detection is the task of detecting the full 3D pose of objects relative to an autonomous platform. It is an important perception system that can be used to plan actions according to the behavior of other dynamic objects in an environment. Due to the poor generalization of object detectors trained and tested on different datasets, this thesis concerns the utilization of unsupervised domain adaptation to train object detectors fit for mobile robotics without any labeled training data. To tackle the problem a novel approach Unsupervised Adversarial Domain Adaptation 3D (UADA3D) is presented to adapt LiDAR-based detectors, through drawing inspiration from the success of adversarial adaptation for 2D object detection in RGB images. The method adds learnable discriminator layers that discriminate between the features and bounding box predictions in the labeled source and unlabeled target data. The gradients are then reversed through gradient reversal layers during backpropagation to the base detector, which in turn learns to extract features that are similar between the domains in order to fool the discriminator. The method works for multi-class detection by simultaneous adaptation of all classes in an end-to-end trainable network and works for both point-based and voxel-based single-stage detectors. The results show that the proposed method increases detection scores for adaptation from dense to sparse point clouds and from simulated data toward the data of a mobile delivery robot, successfully handling the two relevant domain gaps given by differences in marginal and conditional probability distributions. / 3D-objektdetektering handlar om att upptäcka hela 3D-positionen för objekt i förhållande till en autonom plattform. Det är ett viktigt perceptionsystem som kan användas för att planera åtgärder baserat på beteendet hos andra dynamiska objekt i en miljö. På grund av den dåliga generaliseringen av objektavkännare som tränats och testats på olika datamängder, handlar denna avhandling om användningen av osuperviserad domänanpassning för att träna objektavkännare som är anpassade för mobila robotar utan några märkta träningsdata. För att tackla problemet presenteras ett nytt tillvägagångssätt Unsupervised Adversarial Domain Adaptation 3D (UADA3D) för att anpassa LiDAR-baserade avkännare, genom att ta inspiration från framgången av mospelaranpassning för 2D-objektdetektering i RGB-bilder. Metoden lägger till inlärbara diskriminatorlager som diskriminerar mellan egenskaperna och prediktionerna i annoterad käll- och oannoterad måldata. Gradienterna är sedan reverserae genom gradientreversering under bakåtpropagering till basdetekorn, som i sin tur lär sig att extrahera egenskaper som är liknande mellan domänerna för att lura diskriminatorn. Metoden fungerar för flerklassdetektering genom samtidig anpassning av alla klasser i ett end-to-end-träningsbart nätverk och fungerar för både punktbaserade och voxelbaserade enstegs detektorere. Resultaten visar att den föreslagna metoden förbättrar detektionen för domänanpassning från täta till glesa punktmoln och från simulerad data till data från en mobil leveransrobot, därmed hanterar metoden framgångsrikt de två relevanta domänskillnaderna i marginella- och betingade sannolikhetsfördelningar.
|
5 |
Real-Time Continuous Euclidean Distance Fields for Large Indoor EnvironmentsWarberg, Erik January 2023 (has links)
Real-time spatial awareness is essential in areas such as robotics and autonomous navigation. However, as environments expand and become increasingly complex, maintaining both a low computational load and high mapping accuracy remains a significant challenge. This thesis addresses these challenges by proposing a novel method for real-time construction of continuous Euclidean distance fields (EDF) using Gaussian process (GP) regression, hereafter referred to as GP-EDF, tailored specifically for large indoor environments. The proposed approach focuses on leveraging the inherent structural information of indoor spaces by partitioning them into rooms and constructing a local GP-EDF model for each, reducing the computational cost tied to large matrix operations in GPs. By also exploiting the geometric regularities commonly found in indoor spaces it detects walls and represents them as line segments. This information is integrated into the models’ priors to both improve accuracy and further reduce the computational expense. Comparison with two baselines demonstrated the proposed approach’s effectiveness. It maintained low computation times despite increasing amounts of sensor data, signifying a significant improvement in scalability. Results also confirmed that the EDF quality remains high and isn’t affected by partitioning the GP-EDF into local models. The method also reduced the influence of sensor noise on the EDF’s accuracy when incorporating the line segments into the model. Additionally, the proposed room segmentation method proved to be efficient and generated accurately partitioned rooms, with a high degree of independence between them. In conclusion, the proposed approach offers a scalable, accurate and efficient solution for real-time construction of EDFs, demonstrating significant potential in aiding autonomous navigation within large indoor spaces. / Realtidsrumslig medvetenhet är avgörande inom områden som robotik och autonom navigering. Emellertid, när miljöer expanderar och blir alltmer komplexa, kvarstår det en betydande utmaning att bibehålla både en låg beräkningsbelastning och hög kartläggningsnoggrannhet. Denna avhandling bemöter dessa utmaningar genom att föreslå en ny metod för realtidskonstruktion av kontinuerliga euklidiska avståndsfält (EDF) med hjälp av regression via gaussiska processer (GP), hädanefter benämnd GP-EDF, specifikt anpassad för stora inomhusmiljöer. Den föreslagna metoden fokuserar på att utnyttja den inneboende strukturella informationen i inomhusmiljöer genom att dela upp dem i rum och konstruera en lokal GP-EDF-modell för varje rum, vilket minskar den beräkningsbelastning som är kopplad till stora matrisoperationer i GP:er. Genom att även utnyttja de geometriska regelbundenheter som vanligtvis finns i inomhusutrymmen, detekterar den väggar och representerar dem som linjesegment. Denna information integreras sedan i modellernas a priori-fördelningar, både för att förbättra noggrannheten och ytterligare minska den beräkningsmässiga kostnaden. Jämförelse med två baslinjemodeller demonstrerade den föreslagna metodens effektivitet. Den bibehöll låga beräkningstider trots ökande mängder sensordata, vilket indikerar en betydande förbättring av skalbarheten. Resultaten bekräftade även att kvaliteten på EDF:en förblir hög och påverkas inte av uppdelningen av GP-EDF:en i lokala modeller. Metoden minskade även sensorbrusets inverkan på EDF:ens noggrannhet vid integrering av linjesegment i modellen. Dessutom visade sig den föreslagna rumsegmenteringsmetoden vara effektiv och genererade korrekt uppdelade rum, med en hög grad av oberoende mellan dem. Sammanfattningsvis erbjuder den föreslagna metoden en skalbar och effektiv lösning för realtidskonstruktion av EDF:er, och visar på betydande potential att underlätta autonom navigering inom stora inomhusutrymmen.
|
6 |
A Trust-Region Method for Multiple Shooting Optimal ControlYang, Shaohui January 2022 (has links)
In recent years, mobile robots have gained tremendous attention from the entire society: the industry is aiming at selling more intelligent products while the academia is improving their performance from all perspectives. Real world examples include autnomous driving vehicles, multirotors, legged robots, etc. One of the challenging tasks commonly faced by all game players, and all robotics platforms, is to plan motion or locomotion of the robot, calculate an optimal trajectory according to certain criterion and control it accordingly. Difficulty of solving such task usually arises from high-dimensionality and complexity of the system dynamics, fast changing conditions imposed as constraints and necessity for real-time deployment. This work proposes a method over the aforementioned mission by solving an optimal control problem in a receding horizon fashion. Unlike the existing Sequential Linear Quadratic [1] algorithm which is a continuous-time variant of Differential Dynamic Programming [2], we tackle the problem in a discretized multiple shooting fashion. Sequential Quadratic Programming is employed as optimization technique to solve the constrained Nonlinear Programming iteratively. Moreover, we apply trust region method in the sub Quadratic Programming to handle potential indefiniteness of Hessian matrix as well as to improve robustness of the solver. Simulation and benchmark with previous method have been conducted on robotics platforms to show the effectiveness of our solution and superiority under certain circumstances. Experiments have demonstrated that our method is capable of generating trajectories under complicated scenarios where the Hessian matrix contains negative eigenvalues (e.g. obstacle avoidance). / De senaste åren har mobila robotar fått enorm uppmärksamhet från hela samhället: branschen siktar på att sälja mer intelligenta produkter samtidigt som akademin förbättrar sina prestationer ur alla perspektiv. Exempel på verkligheten inkluderar autonoma körande fordon, multirotorer, robotar med ben, etc. En av de utmanande uppgifterna som vanligtvis alla spelare och alla robotplattformar står inför är att planera robotens rörelse eller rörelse, beräkna en optimal bana enligt vissa kriterier och kontrollera det därefter. Svårigheter att lösa en sådan uppgift beror vanligtvis på hög dimensionalitet och komplexitet hos systemdynamiken, snabbt föränderliga villkor som åläggs som begränsningar och nödvändighet för realtidsdistribution. Detta arbete föreslår en metod över det tidigare nämnda uppdraget genom att lösa ett optimalt kontrollproblem på ett vikande horisont. Till skillnad från den befintliga Sequential Linear Quadratic [1] algoritmen som är en kontinuerlig tidsvariant av Differential Dynamic Programming [2], tar vi oss an problemet på ett diskretiserat multipelfotograferingssätt. Sekventiell kvadratisk programmering används som optimeringsteknik för att lösa den begränsade olinjära programmeringen iterativt. Dessutom tillämpar vi trust region-metoden i den sub-kvadratiska programmeringen för att hantera potentiell obestämdhet av hessisk matris samt för att förbättra lösarens robusthet. Simulering och benchmark med tidigare metod har utförts på robotplattformar för att visa effektiviteten hos vår lösning och överlägsenhet under vissa omständigheter. Experiment har visat att vår metod är kapabel att generera banor under komplicerade scenarier där den hessiska matrisen innehåller negativa egenvärden (t.ex. undvikande av hinder).
|
7 |
Design and evaluation of contingency plans for connectivity loss in cloud-controlled mobile robots / Utformning och utvärdering av beredskapsplaner för förlust av uppkoppling i molnbaserade mobila robotarLopez Iniesta Diaz Del Campo, Javier January 2024 (has links)
Recent advancements in telecommunications have brought new tools about in the field of robotics, with offloading emerging as one of the most significant developments. Hence, computationally expensive tasks are performed on a server in the cloud instead of on the mobile robot, reducing processing costs in robots and enhancing their efficiency. However, one of the major challenges of offloading robot control is to maintain functional safety even when the connection with the server is interrupted. To mitigate these connectivity losses, an optimization-based method has been developed to compute an environment-dependent contingency plan. This plan is sent from the cloud to the robot together with the corresponding control command. The planner takes into account the current map, based on all sensor data collected up to the time of optimization, and the nominal trajectory to provide a sequence of safe control commands. Assuming that in the absence of connectivity, all detected objects will move at a constant speed. Therefore, the contingency plan would be executed on the robot only when connectivity to the cloud is lost, without making use of subsequent sensor data in the robot’s on-board processor. Thus, through the proposed method, it is possible to maximize the movement time of the mobile robot in case of loss of connectivity with the cloud controller without compromising any safety constraints. In this context, two different approaches have been designed based on the possibility of deviating from the nominal trajectory. In the first, called “path following”, the mobile robot is constrained to stay on the reference path, but can vary its speed, performing a safety brake when there is a risk of collision. In contrast, in “trajectory following”, deviation is allowed by trying to prolong the point at which the velocity is reduced. The evaluation shows that the optimal approach depends on the application for which the mobile robot will be used. Furthermore, these approaches do not overload the network bandwidth, since contingency plans can be optimized by parameterizing the velocity sequences or by reducing the sending rate through event-triggered sending. / De senaste framstegen inom telekommunikation har introducerat nya verktyg inom robotikens område, där offloading är en av de mest relevanta. Således utförs beäkningsintensiva uppgifter på en server i molnet istället för på den mobila roboten, vilket minskar bearbetningskostnaderna för roboter och ökar deras effektivitet. En av de största utmaningarna med att offloada robotstyrning är dock att bibehålla funktionell säkerhet även när anslutningen till fjärrservern bryts. För att hantera sådana avbrott, har vi utvecklat en optimeringsbaserad metod för att beräkna en reservplan, anpassad till miljön runt roboten. Denna plan skickas från molnet till roboten tillsammans med varje styrkommando. Planeraren beaktar den aktuella kartan, baserad på all sensordata som samlats in fram till nu, och den nominella banan och beräknar en säker reservplan i form av en sekvens av styrkommandon. För säkerhets skull antar planeraren att i händelse av ett avbrott, kommer alla hinder i kartan att närma sig roboten med en konstant hastighet. Det gör det säkert att exekvera reservplanen om anslutningen till molnet går förlorad, utan att använda efterföljande sensordata för att uppdatera kartan. Den föreslagna metoden gör det alltså möjligt att maximera tiden som den mobila roboten kan fortsätta köra vid förlust av anslutning till molnservern, utan att göra avkall på säkerheten. I detta projekt har vi utformat två olika planeringsmetoder, som skiljer sig vad gäller möjligheten att avvika från den nominella banan. I den första, kallad “path following”, tillåts inte roboten att avvika från referensbanan och utför därför en säkerhetsbromsning när det finns risk för kollision. I den andra, kallad “trajectory following”, tillåts roboten avvika från referensbanan, genom att försöka fördröja det ögonblick då roboten behöver bromsa. Utvärderingen visar att vilken metod som är bäst, beror på tillämpningen som den mobila roboten används för. Dessutom överbelastar dessa tillvägagångssätt inte nätverksbandbredden, eftersom beredskapsplaner kan optimeras genom att parameterisera hastighetssekvenser eller genom att minska överföringshastigheten. / Los recientes avances en las telecomunicaciones han traído consigo nuevas herramientas en la robótica, siendo el offloading una de los desarrollos más significativos. Así, las tareas computacionalmente más costosas se realizan en un servidor en la nube en lugar de en el robot móvil, reduciendo los costos de procesamiento en el robot y mejorando su eficiencia. Sin embargo, uno de los mayores desafíos del offloading de control de robots es mantener la seguridad funcional incluso cuando la conexión con el servidor se interrumpe. Con el fin de mitigar las pérdidas de conectividad, se ha desarrollado un método basado en optimizacion que calcula un plan de contingencia dependiente del entorno. Este plan se envía desde la nube al robot junto con el comando de control correspondiente. El planificador tiene en cuenta el mapa del entorno actual, basado en todos los datos del sensor recopilados hasta el momento de la optimización, y la trayectoria nominal para proporcionar una secuencia de comandos de control seguros. En este sentido, el planificador asume que, en ausencia de conectividad, todos los objetos detectados se aproximarán al robot a una velocidad constante. Este plan de contingencia se ejecutaría en el robot solo cuando se pierde la conectividad con la nube, sin hacer uso de datos de sensor posteriores en el procesador a bordo del robot. Por lo tanto, mediante el método propuesto, se logra maximizar el tiempo de movimiento del robot móvil en caso de pérdida de conectividad con el controlador en la nube sin sacrificar las restricciones de seguridad. En este contexto, dos enfoques distintos según la posibilidad de desviarse o no de la trayectoria nominal han sido diseñados. En el primero, denominado “path following”, no se permite que se desvíe de la referencia, aplicando un frenado de seguridad cuando existe riesgo de colisión. En cambio, en “trajectory following”, se permite la desviación para tratar de prolongar el momento en el que se reduce la velocidad. La evaluación muestra que el enfoque óptimo depende de la aplicación para la cual se utilizará el robot móvil. Además, estos enfoques no sobrecargan el ancho de banda de la red, ya que los planes de contingencia pueden optimizarse parametrizando las secuencias de velocidad o reduciendo la velocidad de envío.
|
Page generated in 0.0531 seconds