• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Problem solving in physics: undergraduates' framing, procedures, and decision making

Modir, Bahar January 1900 (has links)
Doctor of Philosophy / Department of Physics / Eleanor C. Sayre / In this dissertation I will start with the broad research question of what does problem solving in upper division physics look like? My focus in this study is on students' problem solving in physics theory courses. Some mathematical formalisms are common across all physics core courses such as using the process of separation of variables, doing Taylor series, or using the orthogonality properties of mathematical functions to set terms equal to zero. However, there are slight differences in their use of these mathematical formalisms across different courses, possibly because of how students map different physical systems to these processes. Thus, my first main research question aims to answer how students perform these recurring processes across upper division physics courses. I break this broad question into three particular research questions: What knowledge pieces do students use to make connections between physics and procedural math? How do students use their knowledge pieces coherently to provide reasoning strategies in estimation problems? How do students look ahead into the problem to read the information out of the physical scenario to align their use of math in physics? Building on the previous body of the literature, I will use the theory family of Knowledge in Pieces and provide evidence to expand this theoretical foundation. I will compare my study with previous studies and provide suggestions on how to generalize these theory expansions for future use. My experimental data mostly come from video-based classroom data. Students in groups of 2-4 students solve in-class problems in quantum mechanics and electromagnetic fields 1 courses collaboratively. In addition, I will analyze clinical interviews to demonstrate how a single case study student plays an epistemic game to estimate the total energy in a hurricane. My second research question is more focused on a particular instructional context. How do students frame problem solving in quantum mechanics? I will lay out a new theoretical framework based in epistemic framing that separates the problem solving space into four frames divided along two axes. The first axis models students' framing in math and physics, expanded through the second axis of conceptual problem solving and algorithmic problem solving. I use this framework to show how students navigate problem solving. Lastly, I will use this developed framework to interpret existing difficulties in quantum mechanics.
2

An Evaluative Study of the Returned Missionary Class at Brigham Young University

Wyatt, Arwen Tanis 19 December 2013 (has links) (PDF)
This thesis reports on an evaluative study of the first 300-level Spanish class at Brigham Young University. The information gathered describes the history of the class and changes in curriculum and goals over the years. It also describes students who have taken the class: native Spanish speakers, heritage speakers, returned missionaries, students from lower-levels, students with a background in another Romance language, and presents information as to how well the class has met the needs of each group of students, as well as suggestions to better meet student needs. Results indicate that there is a general satisfaction with the first 300-level Spanish class across the different categories of Spanish students in this class. Data also indicate that additional review of the class may be beneficial in order to 1) increase horizontal articulation, 2) better meet General Education requirements, 3) increase the student preparedness from Spanish 206 to 321, and 4) improve instructor training.
3

"You get what you pay for" vs "You can alchemize": Investigating Discovery Research Experiences in Inorganic Chemistry/Chemistry Education via an Undergraduate Instructional Laboratory

Bodenstedt, Kurt Wallace 08 1900 (has links)
Synthesis of d10 complexes of monovalent coinage metals, copper(I) and gold(I), with dithiophosphinate/diphosphine ligands -- along with their targeted characterization and screening for inorganic or organic light emitting diodes (LEDs or OLEDs, respectively) -- represents the main scope of this dissertation's scientific contribution in inorganic and materials chemistry. Photophysical studies were undertaken to quantify the phosphorescence properties of the materials in the functional forms required for LEDs or OLEDs. Computational studies were done to gain insights into the assignment of the phosphorescent emission peaks observed. The gold(I) dinuclear complexes studied would be candidates of OLED/LED devices due to room temperature phosphorescence, visible absorption/excitation bands, and low single-digit lifetimes -- which would promote higher quantum yield at higher voltages in devices with concomitant lower roll-off efficiency. The copper(I) complexes were not suited to the OLED/LED applications but can be used for thermosensing materials. Crystallographic studies were carried to elucidate coefficients of thermal expansion of the crystal unit cell for additional usage in materials applications besides optoelectronic devices. This has uncovered yet another unplanned potential application for both copper(I) and gold(I) complexes herein, as both types have been found to surpass the literature's threshold for "colossal" thermal expansion coefficients. Two other investigations represent contribution to the field of chemistry education have also been accounted for in this dissertation. First, a 12-week advanced research discovery experiment for inorganic chemistry has been designed to help students develop application-based content expertise, as well as to introduce students to research experiences that are similar to those found in academia, industry, and government research laboratories. Students are expected to develop a novel research project through conducting a literature search to find suitable reaction protocols, incorporating synthetic techniques, collecting data, characterizing products and applications of those products, and presenting their results. This multi-week research discovery experiment is centered on applications of inorganic synthetic techniques to design, analyze, and screen d10 coinage metal complexes for possible LED/OLED-based applications that were presented in chapter 3 of the dissertation. The second chemistry education contribution pertains to designing a pilot research study to investigate undergraduate chemistry majors' perceptions of environmental sources/influences, self-efficacy, outcome expectations, career interests, and career choice goals in the lab designed in chapter 4 of the dissertation. Specifically, this research aims to gauge students' perceptions of their ability to perform synthetic and analytical methods for the creation of materials that were used in a novel research experiment in the context of an inorganic chemistry laboratory. This research study used a survey to collect data on students' motivation, self-efficacy, career interests, and career goals upon graduation, along with their perceived barriers within the course. This research study is guided by the following research question: How does an inorganic chemistry laboratory course, following a research discovery model, impact undergraduate students' (a) confidence with techniques and skills, (b) perception of ability to conduct research, and (c) interest in pursuing careers involving chemistry?
4

Geometric reasoning in an active-engagement upper-division E&M classroom

Cerny, Leonard Thomas 21 August 2012 (has links)
A combination of theoretical perspectives is used to create a rich description of student reasoning when facing a highly-geometric electricity and magnetism problem in an upper-division active-engagement physics classroom at Oregon State University. Geometric reasoning as students encounter problem situations ranging from familiar to novel is described using van Zee and Manogue's (2010) ethnography of communication. Bing's (2008) epistemic framing model is used to illuminate how students are framing what they are doing and whether or not they see the problem as geometric. Kuo, Hull, Gupta, and Elby's (2010) blending model and Krutetskii's (1976) model of harmonic reasoning are used to illuminate ways students show problem-solving expertise. Sayer and Wittmann's (2008) model is used to show how resource plasticity impacts students' geometric reasoning and the degree to which students accept incorrect results. / Graduation date: 2013
5

Evaluation of a Novel Biochemistry Course-Based Undergraduate Research Experience (CURE)

Stefan M Irby (6326255) 15 May 2019 (has links)
<p>Course-based Undergraduate Research Experiences (CUREs) have been described in a range of educational contexts. Although various learning objectives, termed anticipated learning outcomes (ALOs) in this project, have been proposed, processes for identifying them may not be rigorous or well-documented, which can lead to inappropriate assessment and speculation about what students actually learn from CUREs. Additionally, evaluation of CUREs has primarily relied on student and instructor perception data rather than more reliable measures of learning.This dissertation investigated a novel biochemistry laboratory curriculum for a Course-based Undergraduate Research Experience (CURE) known as the Biochemistry Authentic Scientific Inquiry Lab (BASIL). Students participating in this CURE use a combination of computational and biochemical wet-lab techniques to elucidate the function of proteins of known structure but unknown function. The goal of the project was to evaluate the efficacy of the BASIL CURE curriculum for developing students’ research abilities across implementations. Towards achieving this goal, we addressed the following four research questions (RQs): <b>RQ1</b>) How can ALOs be rigorously identified for the BASIL CURE; <b>RQ2</b>) How can the identified ALOs be used to develop a matrix that characterizes the BASIL CURE; <b>RQ3</b>) What are students’ perceptions of their knowledge, confidence and competence regarding their abilities to perform the top-rated ALOs for this CURE; <b>RQ4</b>) What are appropriate assessments for student achievement of the identified ALOs and what is the nature of student learning, and related difficulties, developed by students during the BASIL CURE? To address these RQs, this project focused on the development and use of qualitative and quantitative methods guided by constructivism and situated cognition theoretical frameworks. Data was collected using a range of instruments including, content analysis, Qualtrics surveys, open-ended questions and interviews, in order to identify ALOs and to determine student learning for the BASIL CURE. Analysis of the qualitative data was through inductive coding guided by the concept-reasoning-mode (CRM) model and the assessment triangle, while analysis of quantitative data was done by using standard statistical techniques (e.g. conducting a parried t-test and effect size). The results led to the development of a novel method for identifying ALOs, namely a process for identifying course-based undergraduate research abilities (PICURA; RQ1; Irby, Pelaez, & Anderson 2018b). Application of PICURA to the BASIL CURE resulted in the identification and rating by instructors of a wide range of ALOs, termed course-based undergraduate research abilities (CURAs), which were formulated into a matrix (RQs 2; Irby, Pelaez, & Anderson, 2018a,). The matrix was, in turn, used to characterize the BASIL CURE and to inform the design of student assessments aimed at evaluating student development of the identified CURAs (RQs 4; Irby, Pelaez, & Anderson, 2018a). Preliminary findings from implementation of the open-ended assessments in a small case study of students, revealed a range of student competencies for selected top-rated CURAs as well as evidence for student difficulties (RQ4). In this way we were able to confirm that students are developing some of the ALOs as actual learning outcomes which we term VLOs or verified learning outcomes. In addition, a participant perception indicator (PPI) survey was used to gauge students’ perceptions of their gains in knowledge, experience, and confidence during the BASIL CURE and, therefore, to inform which CURAs should be specifically targeted for assessment in specific BASIL implementations (RQ3;). These results indicate that, across implementations of the CURE, students perceived significant gains with large effect sizes in their knowledge, experience, and confidence for items on the PPI survey (RQ3;). In our view, the results of this dissertation will make important contributions to the CURE literature, as well as to the biochemistry education and assessment literature in general. More specifically, it will significantly improve understanding of the nature of student learning from CUREs and how to identify ALOs and design assessments that reveal what students actually learn from such CUREs - an area where there has been a dearth of available knowledge in the past. The outcomes of this dissertation could also help instructors and administrators identify and align assessments with the actual features of a CURE (or courses in general), use the identified CURAs to ensure the material fits departmental or university needs, and evaluate the benefits of students participating in these innovative curricula. Future research will focus on expanding the development and validation of assessments so that practitioners can better evaluate the efficacy of their CUREs for developing the research competencies of their undergraduate students and continue to render improvements to their curricula.</p>

Page generated in 0.0763 seconds