Spelling suggestions: "subject:"utilitycal"" "subject:"utility.camu""
11 |
Modelling of utility-scale PV systems and effects of solar irradiance variations on voltage levels. / Modelagem de sistemas fotovoltaicos de grande escala e efeitos das variações na radiação nos níveis de tensão.Montenegro, Cristian Fernando Torres 13 May 2016 (has links)
This work presents a dynamic model for utility-scale PV systems. The model is based on a centralized converter topology, which uses a voltage-sourced converter (VSC) to facilitate the exchange of energy between PV generators and the utility grid. The related control system regulates active and reactive power injected by the PV system, based on a current control strategy. Moreover, the model includes a Maximum Power Point Tracking (MPPT) scheme, implemented with the incremental conductance method. Dimensioning of the model is presented as well as simulation cases to validate its performance. Subsequently, the model was used to analyze the effect of variations in solar radiation on a test network with high penetration of photovoltaic generation. Results showed that without proper compensation of reactive power, variations in solar radiation can cause voltage fluctuations outside allowable limits. Thus, in order to mitigate these fluctuations, local control strategies were implemented to allow the exchange of reactive power between the solar farm and the utility grid. Simulations showed that the proposed strategies can mitigate voltage fluctuations at the point of common coupling, improving voltage regulation in the network. / Este trabalho apresenta um modelo dinâmico de sistemas fotovoltaicos de grande escala. O modelo é baseado em uma topologia de conversor centralizado, que usa um conversor de fonte de tensão (VSC) para facilitar a troca de energia entre os geradores fotovoltaicos e a rede elétrica. O sistema de controle relacionado regula a energia ativa e reativa injetada pelo sistema fotovoltaico, com base em uma estratégia de controle de corrente. Além disso, o modelo inclui um sistema de rastreamento de ponto de potência máxima (MPPT), implementado com o método da condutância incremental. O dimensionamento do modelo é apresentado, bem como vários casos de simulação para validar o seu desempenho. Posteriormente, o modelo foi utilizado para analisar o efeito das variações na radiação solar sobre uma rede de teste com uma elevada penetração de geração fotovoltaica. Os resultados mostraram que sem uma adequada compensação de energia reativa, as variações na radiação solar podem causar flutuações de tensão fora dos limites permitidos. Assim, a fim de mitigar estas flutuações, estratégias de controle local foram implementadas para permitir a troca de potência reativa entre os sistemas fotovoltaicos e a rede. As simulações mostraram que as estratégias propostas podem mitigar as flutuações de tensão no ponto de acoplamento comum, melhorando a regulação de tensão na rede.
|
12 |
A Contingency Framework for Assessing the Commercial Potential of Utility-scale AgrivoltaicsLarsson, Filippa January 2023 (has links)
Purpose - In the pursuit of renewable energy sources, solar photovoltaic (PV) is predicted to become the single biggest global source of energy by the year of 2027, part of a trilemma involving climate change, biodiversity and food security. Agrivoltaic (AV) systems, the co-location and potential symbiosis between agricultural activities and solar PV, has thereby arisen as a potential solution for dual land-use. The research within this area is novel, and scholars agree that there is a need for the conceptualization of utility-scale AV in general, and the commercialization process of such systems in particular. Thereby, the purpose of this study is to unravel the key factors, activities and stakeholder involvement in order to assess the commercial potential of utility-scale AV. By addressing research questions: RQ1. What are the key factors for assessing the commercial potential of utility-scale AV?, RQ2. Which activities are essential to address these factors? and RQ3. Who are the key stakeholders that need to be involved in these activities?, a contingency framework for the assessment process has been developed. Method - In order to fulfill the purpose of this study utility-scale AV was approached as a Technology Innovation System (TIS) where the solar energy actor Sunna Group AB (Sunna) enabled insight to the potential industry context of utility-scale AV. Respondents were sampled within the TIS, forming the prerequisites for this multiple case study. Empirical data were collected in three phases: 1) Exploratory, 2) Semi-structured and 3) Final workshop, resulting in 3 workshops and 17 interviews, analyzed by a thematic analysis. Findings - The thematic analysis resulted in four main themes: 1) Socio-political factors, 2) Techno-economical factors, 3) Meso activities for commercialization and 4) Macro activities for commercialization, under which seven key factors, six overarching activities and the stakeholder involvement in these activities, were revealed. These further formed a contingency framework providing an overview of how these building blocks are interlinked. Theoretical & practical implications - The resulting framework provides an overview and synthesizes the commercialization of utility-scale AV, bridging the gap between stakeholder involvement and the key factors for assessing the commercial potential. The practical implications of this study primarily involve the solar energy sector, yet deemed to be of value to all potential stakeholders within the ecosystem of AV. Limitations & future research - The limitations of this study includes the potential exclusion of stakeholders within the data collection process due to the complex stakeholder configuration of AV, as well as the geographical constraints limiting this study to the context of Sweden. Future research is encouraged within several fields of this novel research area, predominantly including stakeholder involvement, business model configuration and how to mobilize the synergy sought in technology development between the solar energy- and agricultural sector.
|
13 |
SYSTEM-LEVEL PERFORMANCE AND RELIABILITY OF SOLAR PHOTOVOLTAIC FARMS: LOOKING AHEAD AND BACKMuhammed-Tahir Patel (11798318) 20 December 2021 (has links)
<div>In a world of ever-increasing demand for energy while preventing adverse effects of climate</div><div>change, renewable energy has been sought after as a sustainable solution. To this end,</div><div>the last couple of decades have seen an advancement in research and development of solar</div><div>photovoltaic (PV) technology by leaps and bounds. This has led to a steady improvement</div><div>in the cost-effectiveness of solar PV as compared to the traditional sources of energy, e.g.,</div><div>fossil fuels as well as contemporary renewable energy sources such as wind and hydropower.</div><div>To further decrease the levelized cost of energy (LCOE) of solar PV, new materials and</div><div>technologies are being investigated and subsequently deployed as residential, commercial, and</div><div>utility-scale systems. One such innovation is called bifacial PV, which allows collection of</div><div>light from the front as well as rear surfaces of a flat PV panel.</div><div><br></div><div>In this thesis, we present a detailed investigation of bifacial solar PV farms analyzed across</div><div>the globe. We define the problem, explore the challenges, and collaborate with researchers</div><div>from academia and the PV industry to find a novel solution.</div><div><br></div><div>First, we begin by developing a multi-module computational framework to numerically</div><div>model a utility-scale bifacial solar PV farm. This requires integrating optical, electrical,</div><div>thermal, and economic models in order to estimate the energy yield and LCOE of a bifacial</div><div>PV system. The first hurdle is to re-formulate the LCOE so that the economist and the</div><div>technologist can collaborate seamlessly. Thus, we re-parameterize the LCOE expression</div><div>and validate our economic model with economists at the National Renewable Energy Lab</div><div>(NREL).</div><div><br></div><div>Second, we extend the existing optical and electrical models created for stand-alone</div><div>bifacial PV panels to models that can simulate a large-scale bifacial solar PV farm. This</div><div>brings the challenge of mathematically modeling solar farms and light collection on the rows</div><div>of PV panels elevated from the ground by taking into account the mutual shading between</div><div>the rows, reflections from the ground, and elevation-dependent light absorption on the rear</div><div>surface of the PV panels from several neighboring rows. Next, we integrate temperaturedependent</div><div>efficiency models to take into account the effects of location-dependent ambient</div><div>temperature, wind speed, and technology-varying temperature coefficients of the solar PV</div><div>system in consideration.</div><div><br></div><div>Third, we complete the comprehensive modeling of bifacial solar PV farms by including</div><div>two types of single-axis tracking algorithms viz. sun-tracking and power tracking. Using these</div><div>algorithms, we explore the best tracking orientation of solar farms i.e., East-West tracking</div><div>vs. North-South tracking for locations around the world. We further find the best land type</div><div>suitable for installation of these E/W or N/S tracking bifacial solar PV farms.</div><div><br></div><div>Fourth, we reduce the computation time of numerical modeling by utilizing the advantages</div><div>of machine learning algorithms. We train neural networks using data from the alreadybuilt</div><div>models to emulate the numerical modeling of a solar farm. Amazingly, we find the</div><div>computation time reduces by orders of magnitude while accurately estimating the energy</div><div>yield and LCOE of PV farms.</div><div><br></div><div>Fifth, we derive, compare, and experimentally validate the thermodynamic efficiency</div><div>limits of photovoltaic-to-electrochemical energy conversion for the purpose of storing solar</div><div>energy for future needs.</div><div><br></div><div>Finally, we present some new ideas and guidelines for future extensions of this thesis as</div><div>well as new challenges and problems that need further exploration.</div>
|
14 |
Modeling and Optimization of Photovoltaic Installations at Urban ScaleFuster Palop, Enrique 15 January 2024 (has links)
Tesis por compendio / [ES] El sector de la edificación representa el 20% y el 40% de la energía primaria mundial, contribuyendo al 30% de las emisiones de CO2, un desafío amplificado por el crecimiento de la población. Sin embargo, el creciente interés en las fuentes de energía renovables ya maduras, como la energía solar fotovoltaica (PV), ofrece oportunidades para mitigar los anteriores impactos, así como potenciales beneficios económicos, ambientales y sociales.
El presente trabajo investiga las posibilidades y limitaciones en el despliegue masivo de sistemas de autoconsumo fotovoltaico (PVSC) en áreas urbanas desde una perspectiva de planificación urbana, considerando las limitaciones técnicas y económicas actuales. Con este fin, esta tesis emplea estrategias basadas en datos para desarrollar modelos físicos y modelos ágiles basados en regresiones como herramientas de evaluación del potencial técnico y económico de los sistemas PVSC en contextos urbanos.
En primer lugar, se ha desarrollado y validado un submodelo empírico de producción fotovoltaica con mediciones climáticas y de producción recopiladas de una planta fotovoltaica de 50MW en funcionamiento. Además, se han investigado varias mejoras en el modelado del performance ratio (PR) en entornos de baja irradiancia. En la segunda etapa de esta investigación, el submodelo anterior se ha integrado en un modelo tecnoeconómico 3D basado en sistemas de información geográfica (GIS) capaz de evaluar el PVSC económico para una muestra de edificios residenciales. Además, el modelo incorpora modelos de sombras y estimaciones de demanda eléctrica horaria para evaluar una muestra de edificios residenciales. Una base de datos de simulación, derivada de los resultados anteriores, ha permitido el desarrollo de una metodología para entrenar un modelo basado en regresión y con ello estimar la producción y el periodo de retorno económico (PB) a escala de edificio con una precisión asumible para fines de planificación energética. Como último paso, se mejoró el submodelo de demanda empleando datos reales agregados de series temporales para múltiples patrones de consumo y proporcionando estimaciones realistas para otras tipologías de edificios. Además de las restricciones espaciales, el modelo optimiza el tamaño de las instalaciones según su demanda y limitaciones económicas, maximizando la relación entre autosuficiencia (SS) y el PB. Además, la metodología basada en regresión se ha ampliado para estimar, además del retorno de la inversión, múltiples indicadores clave de desempeño (KPIs) como la tasa interna de retorno (IRR), la tasa de autoconsumo (SC) y SS. A través de una adecuada identificación de predictores y una metodología de entrenamiento y validación, estas correlaciones permitieron estimaciones de rendimiento con una desviación aceptable respecto al modelo físico. La disponibilidad de datos relacionados con la construcción está aumentando progresivamente en la mayoría de los países, lo que permite una amplia aplicación y generalización de las metodologías propuestas y reduce el costo de simulación de estos estudios para cubrir áreas urbanas más extensas.
Como aplicación de las metodologías anteriores, se analizaron los resultados del potencial económico fotovoltaico del parque inmobiliario completo de un municipio mediterráneo bajo diferentes escenarios económicos y de demanda a escala de edificio y municipal. Para el escenario que cumple con la regulación actual en España, la SS municipal oscila entre el 22%-43% para los escenarios más optimista y pesimista,
respectivamente. El dimensionamiento óptimo de las instalaciones según las curvas de carga en la modalidad de Net Billing (NB) es crucial para obtener resultados económicos competitivos. En consecuencia, la generación fotovoltaica anual representó el 68% del consumo eléctrico total anual. / [CA] El sector de l'edificació representa el 20% i el 40% de l'energia primària mundial, contribuint al 30% de les emissions de CO2, un desafiament amplificat pel creixement de la població. No obstant això, el creixent interés en les fonts d'energia renovables ja madures, com l'energia solar fotovoltaica (PV), ofereix oportunitats per a mitigar els anteriors impactes, així com potencials beneficis econòmics, ambientals i socials.
El present treball investiga les possibilitats i limitacions en el desplegament massiu de sistemes PVSC en àrees urbanes des d'una perspectiva de planificació urbana, considerant les limitacions tècniques i econòmiques actuals. A aquest efecte, aquesta tesi empra estratègies basades en dades per a desenvolupar models físics i models àgils basats en regressions com a eines d'avaluació del potencial tècnic i econòmic dels sistemes PVSC en contextos urbans.
En primer lloc, s'ha desenvolupat i validat un submodel empíric de producció fotovoltaica amb mesuraments climàtics i de producció recopilats d'una planta fotovoltaica de 50MW en funcionament. A més, s'han investigat diverses millores en el modelatge del performance ràtio (PR) en entorns de baixa irradiància. En la segona etapa d'aquesta investigació, el submodel anterior s'ha integrat en un model tecnoeconòmic 3D basat en sistemes d'informació geográfica (GIS) capaç d'avaluar el PVSC econòmic per a una mostra d'edificis residencials. A més, el model incorpora models d'ombres i estimacions de demanda elèctrica horària per a avaluar una mostra d'edificis residencials. Una base de dades de simulació, derivada dels resultats anteriors, ha permés el desenvolupament d'una metodologia per a entrenar un model basat en regressió i amb això estimar la producció i la període de retorn econòmic (PB) a escala d'edifici amb una precisió assumible per a fins de planificació energètica. Com a últim pas, es va millorar el submodel de demanda emprant dades reals agregats de sèries temporals per a múltiples patrons de consum i proporcionant estimacions realistes per a altres tipologies d'edificis. A més de les restriccions espacials, el model optimitza la grandària de les instal·lacions segons la seua demanda i limitacions econòmiques, maximitzant la relació entre la taxa d'autosuficiència (SS) i PB. A més, la metodologia basada en regressió s'ha ampliat per a estimar, a més del retorn de la inversió, múltiples indicadors clau d'acompliment (KPIs) com la taxa interna de retorn (IRR), la taxa d'autoconsum (SC) i la SS. A través d'una adequada identificació de predictors i una metodologia d'entrenament i validació, aquestes correlacions van permetre estimacions de rendiment amb una desviació acceptable respecte al model físic. La disponibilitat de dades relacionades amb la construcció està augmentant progressivament en la majoria dels països, la qual cosa permet una àmplia aplicació i generalització de les metodologies proposades i redueix el cost de simulació d'aquests estudis per a cobrir àrees urbanes més extenses.
Com a aplicació de les metodologies anteriors, es van analitzar els resultats del potencial econòmic fotovoltaic del parc immobiliari complet d'un municipi mediterrani baix diferents escenaris econòmics i de demanda a escala d'edifici i municipal. Per a l'escenari que compleix amb la regulació actual a Espanya, la taxa d'autosuficiència municipal oscil·la entre el 22%-43% per als escenaris més optimista i pessimista, respectivament. El dimensionament òptim de les instal·lacions segons les corbes de càrrega en la modalitat de Net Billing (NB) és crucial per a obtindre resultats econòmics competitius. En conseqüència, la generació fotovoltaica anual va representar el 68% del consum elèctric total anual. / [EN] The building sector in developed countries consumes 20% to 40% of global primary energy, contributing to 30% of the CO2 emissions, a challenge amplified by urban population growth. However, the rising interest in mature renewable energy sources, such as solar photovoltaic (PV), offers opportunities to mitigate these impacts and potential economic, environmental, and social benefits.
The present research investigates the possibilities and constraints in the massive deployment of photovoltaic self-consumption (PVSC) systems in urban areas from an urban planning perspective, considering the current technical and economic limitations. To this end, this thesis employs data-driven strategies to develop both bottom-up physical and agile regression-based models as assessment tools for the technical and economic potential of PVSC systems in urban contexts.
First, an empirical PV production submodel has been developed and validated with climate and production measurements collected from a 50MW utility-scale in operation. Additionally, several improvements in modeling the performance ratio (PR) in low-irradiance environments have been investigated. In the second stage of this research, the previous submodel has been integrated into a physical 3D GIS-based techno-economic model capable of assessing the economic PVSC for a sample of residential buildings. Additionally, the model incorporates shadow modeling and hourly electric demand estimations to assess sample residential buildings. A simulation database, derived from the previous results, has allowed the development of a methodology to train a regression-based model to estimate the production and the economic payback (PB) at a building scale with an assumable accuracy for energy planning purposes. As the last step, the demand submodel was improved by employing real aggregated time series data for multiple consumer patterns and providing realistic estimations for other building typologies. In addition to spatial restrictions, the model optimizes the sizing of the facilities according to their demand and economic constraints, maximizing the relationship between self-sufficiency (SS) and PB. Furthermore, the regression-based methodology has been extended to estimate, besides the payback, multiple key performance indicators such as internal rate of return (IRR), self-consumption rate (SC), and SS. Through an appropriate predictor identification and a training and validation methodology, these correlations allowed performance estimations with an acceptable deviation compared with the physical model. The availability of building-related data is progressively increasing in most countries, enabling widespread application and generalization of the proposed methodologies and reducing the simulation cost of these studies to cover larger urban areas.
As an application of the previous methodologies, a complete-census economic PV potential results of a Mediterranean municipality's building stock was performed under different demand and economic scenarios at a building and municipality scale. For the scenario that meets the current regulation in Spain, the municipality SS ranged between 22%-43% for the most optimistic and pessimistic scenarios, respectively. The optimal sizing of the facilities according to the load curves in the Net Billing (NB) modality is crucial to obtaining competitive economic results. Consequently, the annual PV generation represented 68% of the annual total electricity consumption of the municipality for a net billing scenario, while a net metering scenario represented 103%. Owing to economies of scale and high demand intensity, a higher profitability was found in rooftops of apartment blocks and industrial buildings, which also achieve the highest savings in emissions. / Fuster Palop, E. (2023). Modeling and Optimization of Photovoltaic Installations at Urban Scale [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/202061 / Compendio
|
Page generated in 0.0377 seconds