• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 549
  • 435
  • 96
  • 95
  • 50
  • 27
  • 19
  • 10
  • 8
  • 8
  • 6
  • 5
  • 4
  • 4
  • 4
  • Tagged with
  • 1658
  • 299
  • 195
  • 182
  • 151
  • 150
  • 129
  • 114
  • 113
  • 107
  • 101
  • 99
  • 95
  • 94
  • 93
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Parental Confidence in U.S. Government and Medical Authorities, Measles (Rubeloa) Knowledge, and MMR Vaccine Compliance

Leonard, Wendy 01 January 2015 (has links)
Parents' refusal to immunize their children with the measles, mumps, and rubella (MMR) vaccine has resulted in a surge of measles outbreaks in the United States. The purpose of this correlational study was to examine the relationships between parental knowledge and trust of the MMR vaccine, and their trust in government and medical authorities. The theoretical foundation for this study was the health belief model (HBM). This study determined if there was any relationship between general trust in doctors/governments (i.e., the predictor variable) and attitudes toward MMR vaccine (i.e., the sole dependent variable), and whether gender, age group, or level of education moderated that general trust. A Survey Monkey subscriber database and researcher-developed survey was used to identify and email 2,500 parents of immunization-aged children, resulting in 237 respondents who met the required parameters. The analysis revealed a significant, positive relationship between the criterion and predictor variables, R = .32, R2 = .10, F(1, 235) = 26.39, p. < .001, regardless of gender, age, or education, suggesting an association between higher trust and greater likelihood of a parent allowing vaccination. This study offers significant insights for positive social change by providing pediatricians, primary health care providers, and vaccine educators, with information for communicating with vaccine-hesitant parents: It is not enough to address parental concerns of vaccine safety, efficacy, and necessity. It is also not enough to provide evidence-based scientific data, as doing so has been proven to be ineffective "and for some parents counter-productive" when government and medical authorities are sited as the source. What we need to do is start focusing upon the role of parental trust, including how to best establish that trust, and equally important, what steps are necessary to sustain that trust.
362

Evaluation Of Innate And Adaptive Immune Responses To A Burkholderia Pseudomallei Outer Membrane Vesicles Vaccine In Mice And Non-human Primates

January 2015 (has links)
Burkholderia pseudomallei (Bp) is a major public health concern in the endemic regions of southeast Asia and northern Australia, yet the organism has a worldwide distribution and cases are likely under-reported. In northeast Thailand the mortality rate associated with Bp infection is over 40%. The inherent resistance of Bp to multiple antibiotics impairs treatment, and relapse is seen in more than 25% of survivors. Beyond its public health significance, Bp is considered a potential biological warfare agent by the U.S. DHHS and was recently listed as a Tier 1 select agent. Despite enhanced research and vaccine efforts, traditional vaccine strategies employing attenuated bacterial strains, recombinant proteins, or purified polysaccharides have failed to elicit complete protection against aerosol challenge with Bp. We have previously shown that immunization with outer membrane vesicles (OMVs) derived from Bp can protect mice from lethal melioidosis. In this work we characterize the interactions of OMVs with antigen presenting cells in order to elucidate innate immune responses to the OMV vaccine. Vaccine-mediated antibody responses and protective efficacy were characterized in BALB/c mice. We also tested the safety and immunogenicity of the OMV vaccine in non-human primates (NHP). We show that Bp OMVs interact with dendritic cells and macrophages and are internalized by these antigen presenting cells (APCs).Internalization is dependent on actin polymerization and cholesterol present in APC membranes. OMVs also upregulate MHC class I and II on APCs, as well as promote the production of pro-inflammatory cytokines in a TLR2/4 dependent manner. Immunization of mice with Bp OMVs by the s.c. and i.m. routes induced the production of OMV-specific IgM and IgG and significantly protected mice against aerosol challenge. Addition of alum and MPL did not significantly change the antibody profiles of immunized mice and did not significantly enhance vaccine mediated protection. OMVs were well tolerated in a large animal NHP model. There were no adverse clinical reactions, and NHPs mounted significantly increased levels of OMV-specific IgG and OMV specific CD4+ T cell responses. These results suggest that Bp OMVs can stimulate innate and adaptive immune responses and may represent a safe and efficacious vaccine against melioidosis / acase@tulane.edu
363

Biodegradable particles as vaccine delivery systems

Joshi, Vijaya Bharti 01 July 2014 (has links)
Immunotherapy has been widely investigated in cancer, infectious diseases and allergies for prevention or amelioration of disease progression. In the case of vaccines, the key cellular target in stimulating an effective and appropriate immune response is the professional antigen presenting cell or dendritic cell (DC). Cancer vaccines are primarily aimed at the activation of a tumor-specific cytotoxic T lymphocyte (CTL) response whilst vaccines to allergies are aimed at reducing IgE responses. Such vaccines normally involve the administration tumor-associated antigens (TAAs) for cancer, or antigens (Ags) derived from infectious microbes and allergens in the case of allergies. Ags, whether derived from tumor or allergen, can be combined with adjuvants, that include immunostimulatory molecules recognized by the pathogen associated receptors expressed by DCs and can trigger the activation/maturation of DCs. Co-delivery of an appropriate adjuvant with an Ag can stimulate DCs to subsequently promote a robust Ag-specific CTL response which may favor anti-tumor immunity. Cancer vaccines have been widely investigated in the clinics as a complementary therapy to surgery, radiation and chemotherapy. Activation of CTLs against tumor cells that express TAAs could lead to the complete eradication of a cancer and prevent its reoccurrence. In this study I developed microparticles using a polyanhydride polymer prepared from 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane (CPTEG) and 1,6-bis(p-carboxyphenoxy) hexane (CPH) that has shown inherent adjuvant properties. I prepared 50:50 CPTEG:CPH microparticles encapsulating a model tumor Ag, ovalbumin (OVA), and synthetic oligonucleotide containing an unmethylated CpG motif, CpG, as an adjuvant. CpG has shown significant potential as an adjuvant for TAA-based vaccines leading to significant anti-tumor immune activity. I have shown that mice vaccinated with OVA-encapsulated 50:50 CPTEG:CPH microparticles developed OVA-specific CTL responses. These mice showed enhanced survival compared to the control treatment groups when challenged with OVA expressing tumor cells . In a more novel in-situ cancer vaccine, TAAs from dying tumor cells (caused by certain chemotherapeutic drugs) can be used as the source of Ags delivered to DCs. The presence of an adjuvant with dying cancer cells can assist in appropriate maturation of DCs so as to promote the generation of an effective tumor/TAA-specific CTL response against released TAAs. In this work I developed a therapeutic in situ tumor vaccine encapsulating a chemotherapeutic drug and CpG. Doxorubicin (Dox) is a widely used chemotherapeutic drug that induces tumor cells to undergo an immunogenic form of apoptosis. Sustained release of Dox in solid tumors of mice can cause the release of a variety of TAAs which can be presented by DCs and, in the presence of CpG, stimulate a strong anti-tumor CTL response. I prepared formulations of poly(lactic-co-glycolic acid) (PLGA) particles loaded with Dox and CpG which demonstrated sustained release of their cargo. I show that among various formulations of Dox and CpG, co-delivery of Dox and CpG in the same PLGA particles in-vivo showed the highest reduction in tumor growth and longest survival when compared to treatment groups of PLGA particles delivering Dox and CpG either alone or in combination. PLGA particles have also been investigated as a prophylactic vaccine delivery system that generates a robust Ag-specific CTL response. This system has been employed for the development of vaccines against various infectious diseases and allergies. However, there has been conflicting opinions regarding the optimum size of PLGA particles required to stimulate an active CTL response. Thus, I developed different sizes of PLGA particles encapsulating OVA and CpG to study the relationship of particle size with the magnitude of OVA-specific CTL responses. I showed that the degree of particle uptake and activation of DCs increased with decreasing size of PLGA particles. I also showed that immunization of mice with 300 nm sized particles demonstrated a higher proportion of OVA-specific CTLs and increased the secretion of IgG2a antibody responses. I also evaluated the efficacy of these particles with a clinically relevant Ag, Dermatophagoides pteronyssinus-2 (Der p2). Mice vaccinated with different sizes of PLGA particles loaded with CpG and coated with Der p2 displayed different magnitudes and types of immune activation against Der p2. The small sized particles decreased the airway hyperresponsiveness associated with allergy-induced asthma. The presence of CpG in the PLGA particle vaccines also reduced the airway hyperresponsiveness. This thesis research has contributed to the identification and development of a delivery system for Dox in combination with CpG which gives sustained release of these molecules within tumors and show the longest survival in tumor bearing mice. This study also optimized the size of PLGA particles for the delivery of vaccine to produce a robust Ag specific immune response for development of vaccination against intracellular diseases, cancer and allergy.
364

Therapeutic vaccination for the treatment of metastatic breast cancer

Gross, Brett Patrick 01 May 2018 (has links)
Metastatic breast cancer is a leading cause of cancer-related mortality worldwide. While existing interventions are effective at treating localized tumors, disseminated malignancies remain incurable. Vaccine-induced anti-tumor immunity is a promising approach for treating disseminated tumors, as immune responses are systemic, have antigen-restricted cytotoxicity, and generate protective immune “memory” populations. Our group has developed a novel heterologous prime/boost vaccine protocol that treats established 4T1 murine mammary tumors. Briefly, this approach entails a vaccine prime consisting of tumor lysate antigens encapsulated within poly(lactic-co-glycolic) acid (PLGA) microparticles (MPs). The vaccine prime was followed by a vaccine boost consisting of tumor lysates plus adjuvants. Spontaneous 4T1 lung metastasis was evaluated at a pre-determined endpoint in vaccinated versus untreated mice. Vaccinated mice demonstrated significant, but incomplete, reductions in metastatic tumor burdens relative to untreated control mice. Encouraged by these results, we evaluated additional vaccine variations with the goal of improving therapeutic responses. The addition of immunomodulatory chemotherapy or checkpoint blockade immunotherapy failed to significantly improve the initial vaccine’s efficacy. Conjugation of streptavidin/biotin complexes to the PLGA MP significantly improved vaccine efficacy, with vaccinated mice demonstrating 88% less metastatic tumor burdens than their untreated counterparts. These findings illustrate that vaccines based upon PLGA MP-mediated delivery of tumor lysates can form the basis of an effective treatment for metastatic breast cancer and suggest that similar approaches may be both efficacious and well-tolerated in the clinic.
365

Knowledge and Acceptance of HPV and the HPV Vaccine in Young Men and Their Intention to be Vaccinated

Jasper, Brenda Renee 10 November 2014 (has links)
Sexually active young men are at high risk of contracting HPV and developing genital warts and penile/anal cancers. They contribute significantly to the incidence of HPV in women. The HPV vaccine, Gardasil, was approved in 2009 for use in preventing HPV 6 and 11 in young males ages 9 to 26. Knowledge and awareness of the virus and the vaccine is limited among young men. Promoting education and prevention measures regarding HPV and reducing personal risks to HPV is significant in narrowing the gap between acquisition of the HPV virus and cancer sequelae. A correlational design utilizing cross-sectional survey methodology was used for this study. Seventy participants completed a HPV vaccine survey at a university in Southwestern United States. The survey measured their knowledge and acceptance of the HPV vaccine and their intention to be vaccinated. Male participants were likely to accept or consent to receive the vaccine however they reported low intent to actually get the HPV vaccine. Acceptance of the vaccine was greater among minorities and participants who reported regular doctor visits. Knowledge of HPV and HPV prevention was low. Young men may benefit from HPV vaccine educational marketing strategies that include enhancing their communication skills on HPV, the HPV vaccine and reducing risky sex behaviors.
366

B And T Cell Responses To Epitopes In Disulfide Bond-constrained Recombinant Pfs48/45 Protein, A Malaria Transmission-blocking Vaccine Candidate Antigen

January 2015 (has links)
Our overall research goal is focused on the development of a malaria transmission-blocking vaccine (TBV). The antigenic target, Pfs48/45 protein, is expressed on Plasmodium gametocytes, which are stages responsible for establishing parasite infection in the mosquito vector. The epitopes recognized by functional antibodies targeting Pfs48/45 are disulfide-bond (S-S) constrained, conformational epitopes. As Pfs48/45 protein has not been crystallized, precise location of the S-S bonds and the topology of epitopes are unknown. It has been shown previously that the ability to reduce S-S in antigens can greatly influence the epitopes presented by antigen-presenting cells (APCs) and thus influence induction of effective immune responses. Gamma-interferon-inducible lysosomal thiol reductase (GILT) is an enzyme expressed in APCs that mediates reduction of S-S bonds contained within antigens, for subsequent display of peptides on MHC molecules. Using non-reduced (NR) and reduced/alkylated (RA) Pfs48/45 antigens, we sought to investigate the role of GILT on induction of protective immunity. We hypothesized that the ability to reduce S-S bonds in Pfs48/45 will impact the generation of T cell epitopes, and thus influence helper T cell responses required for B cell stimulation and production of protective antibody. We conducted immunogenicity studies in wild type (WT) and GILT-/- (KO) mice using the two structural forms of Pfs48/45 and analyzed immune responses to full length Pfs48/45, five overlapping fragments and 39 overlapping peptides. Results indicated that generation of Pfs48/45 antibodies is not significantly impacted by the availability of GILT, however there was uniquely Th2-biased T and B cell responses in the KO mice, and a contrasting Th1 bias in WT mice. Results also revealed possible effects of GILT on induction of long-lived plasma cells and memory B cells responsible for resting and antigen-recall responses to Pfs48/45. Data presented also shows reduced immunogenicity of the RA Pfs48/45 antigen and immune responses differed in magnitude and specificity between male and female animals. Overall, we aimed to gain a better understanding of the immunological mechanisms critical to generate protective and lasting immunity against Pfs48/45. These and future studies will contribute significantly to our understanding of antigenic features of Pfs48/45 important for use as a TBV. / acase@tulane.edu
367

Evaluation of DNA vaccine targeting strategies and expression library immunisation against lethal erythrocytic stage Malaria

Rainczuk, Adam, 1976- January 2003 (has links)
Abstract not available
368

Evidence of HIV-1 adaptation to HLA-restricted immune responses at a population level

coreybmoore@hotmail.com, Corey Benjamin Moore January 2002 (has links)
Selection of HIV-1 variants resistant to antiretroviral therapy is well documented. However, the selection in vivo of HIV-1 mutant species that can escape host immune system HLA class I restricted cytotoxic T-lymphocyte responses has, to date, only been documented in a few individuals and its clinical importance is not well understood. This thesis analyses the observed diversity of the HIV-1 reverse transcriptase protein in a well characterised, stable, HLA-diverse cohort of HIV-1 infected patients with over two thousand patient-years of observation. The results show that HIV-1 polymorphism is selected within functional constraints and is associated with specific HLA class I alleles. Furthermore, these associations significantly cluster along the sequence and tend to occur within known corresponding HLA-restricted epitopes. Absence of polymorphism is also HLA-specific and more often seen with common HLA alleles. Knowledge of HLA specific viral polymorphisms can be used to model an individual’s viral load from their HLA type and viral sequence. These results suggest that cytotoxic T-lymphocyte escape mutation in HIV-1 is critical to the host at an individual and population level as well as to short and long term viral evolution. This work provides new insights into viral-host interactions and has clinical implications for individualisation of HIV-1 therapy and vaccine design.
369

Development of Novel Diagnostic and Vaccine Options for Beak and Feather Disease Virus

tickle_me_patty@hotmail.com, Patrick Leslie Shearer January 2009 (has links)
Beak and Feather Disease Virus (BFDV) is a circovirus which causes ill-thrift, feather loss and immunosuppression leading to secondary infections and eventually death in psittacine birds. The development of standardised reagents for the detection and characterisation of BFDV infections and for the production of protective vaccines has been difficult as no cell culture system has yet been found to grow the virus successfully in vitro. However, the development of consistent and effective diagnostic tests and vaccines is now more practical through the application of nucleic acid-based detection methods and recombinant technology. A quantitative real-time PCR assay for the detection of BFDV DNA was developed, using primers designed to amplify a conserved 81 bp fragment of ORFV1 and SYTO9, a fluorescent intercalating dye, with assays run on a Corbett RotorGene 3000. A synthetic oligonucleotide was used to establish standard curves for the quantitation of viral load in both blood and feather preparations. The assay was very sensitive, with a detection limit of 50 copies/ìL. The assay was developed using BFDV-positive DNA extracts from the feathers of 10 different species of birds and validated with blood and feather samples from corellas vaccinated with an experimental BFDV vaccine, then challenged with live virus. Viral DNA was reliably detected in the blood of all control (non-vaccinated) birds and in some vaccinated birds. Contamination of the environment with the feather dander of BFDV-infected birds meant that HA feather preparations were unreliable for the detection and quantitation of viral excretion. Nonetheless, the assay should prove to be a useful and sensitive test for the detection of viral DNA in a range of samples in future investigations. A recombinant BFDV capsid protein was also produced and a specific monoclonal antibody developed against it. The behaviour of the protein in haemagglutination (HA) assays and the behaviour of the monoclonal antibody in western blotting, immunohistochemistry (IHC), ELISA and haemagglutination-inhibition (HI) assays were characterised. The protein had the ability to agglutinate galah erythrocytes as per the wild-type virus and this agglutination was successfully inhibited by antibodies to wild-type BFDV from naturally immune psittacine birds. Furthermore, the protein self-assembled into virus-like particles as determined by electron microscopy. The antibody was specific for both the recombinant BFDV capsid protein and the whole virus and had similar optimal titres when used in western blotting and IHC. The antibody also had HI activity and detected BFDV virus from 3 genera of psittacine birds, including the recently described cockatiel BFDV isolate. A novel “blocking” (or “competitive”) ELISA (bELISA) for the detection of anti- BFDV antibodies in psittacine sera (Ab-bELISA) was also developed and validated with 166 samples from eastern long-billed corellas vaccinated with the recombinant capsid protein and challenged with live virus. The bELISA was found to be both sensitive and specific and correlated strongly with the HI test, thus it should have wide application for the serodiagnosis of BFDV. A survey of cockatiels (n=88) housed at commercial aviaries was conducted to investigate whether BFDV infection occurs in cockatiels. All birds were diagnosed as being virus-free by PCR and HA and had no detectable antibody titre by HI assay. In addition to this, the genomes of two BFDV isolates obtained from diseased cockatiel feathers were sequenced and cross-reactivity assays performed using virus eluted from these feathers and sera from naturally immune psittacine birds. Serological cross-reactivity results and phylogenetic analysis of the nucleotide sequences indicated that the cockatiel virus isolates were serologically and genetically different to other BFDV isolates. This is the first report of an antigenically distinct BFDV in psittacine birds. Since the Ab-bELISA has a lower limit of detection than the HI assay, it was used to repeat the cockatiel sero-survey. No antibodies were detectable in any of the cockatiels tested and thus questions about the real prevalence of BFDV infection in cockatiels and the possible existence of a novel BFDV serotype adapted to cockatiels remain unanswered. The successful control of PBFD in both pet and wild birds depends on the development of vaccines that incite a strong specific immune response and can be efficiently produced in large quantities. Recombinant BFDV capsid proteins have recently been considered as candidate vaccines against BFDV and recombinant techniques allow the development of other candidate vaccines, including DNA vaccines. In order to examine the potential of DNA vaccination as a strategy for the prevention and control of BFDV, two DNA vaccines, based on the nucleotide sequence encoding the capsid protein of BFDV, were developed using the mammalian expression vector pVAX1. The vaccine constructs encoding both the full length and NLS-truncated capsid protein resulted in protein expression both in vitro and in vivo. Protein was detected in COS-7 cells transfected with the constructs with an indirect immunocytochemistry assay using the monoclonal antibody described in Chapter 5. Protein was present in the nucleus of cells transfected with the vaccine encoding the full-length nucleotide sequence and in the cytoplasm of cells transfected with the vaccine encoding the NLS-truncated sequence as expected. Both DNA vaccine constructs induced detectable levels of anti-BFDV antibodies in vaccinated birds, determined using the Ab-bELISA described in Chapter 5. Thus, DNA vaccines similar to those presented here may have application in the prevention and control of BFDV and some options for the further development of these vaccines into effective methods for the control of BFDV are discussed.
370

Tuberculosis: Prospects for an Oral Vaccine Using Novel Antigens and Adjuvants

Hitchick, Nola January 2006 (has links)
In spite of vaccine and treatment strategies, Mycobacterium tuberculosis kills more than 3 people per minute. The emergence of drug-resistant strains makes treating the disease complicated and expensive for government health departments, and unpleasant and laborious for patients. The current vaccine, parenterally administered BCG, is only 50% effective. Oral vaccination has the advantage of targeting the mucosal immune system, which acts at the direct site of initial exposure to the infecting airborne pathogen. In addition, oral vaccines are cheaper and safer to administer than parenteral vaccines. This dissertation provides a conceptual framework for the prevention of the disease by means of oral vaccination and outlines methods that were developed for the production of concentrated purified somatic and extracellular antigens. Immune responses to somatic antigens were also examined in conjunction with established and novel adjuvants. The role of Propionibacterium jensenii 702 as a suitable mucosal adjuvant was supported by the results obtained. / Masters Thesis

Page generated in 0.03 seconds