• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 69
  • 24
  • 13
  • 7
  • 6
  • 6
  • 4
  • 2
  • Tagged with
  • 151
  • 116
  • 33
  • 24
  • 16
  • 16
  • 16
  • 14
  • 12
  • 11
  • 11
  • 11
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Vaccinia virus-encoded bacterial beta-glucuronidase as a diagnostic biomarker for oncolytic virotherapy / Vaccinia Virus-codierte bakterielle Beta-Glucuronidase als diagnostischer Biomarker in der onkolytischen Virotherapie

Heß, Michael January 2013 (has links) (PDF)
Oncolytic virotherapy represents a promising approach to revolutionize cancer therapy. Several preclinical and clinical trials display the safety of oncolytic viruses as wells as their efficiency against solid tumors. The development of complementary diagnosis and monitoring concepts as well as the optimization of anti-tumor activity are key points of current virotherapy research. Within the framework of this thesis, the diagnostic and therapeutic prospects of beta-glucuronidase expressed by the oncolytic vaccinia virus strain GLV-1h68 were evaluated. In this regard, a beta-glucuronidase-based, therapy-accompanying biomarker test was established which is currently under clinical validation. By using fluorescent substrates, the activity of virally expressed beta-glucuronidase could be detected and quantified. Thereby conclusions about the replication kinetics of oncolytic viruses in animal models and virus-induced cancer cell lysis could be drawn. These findings finally led to the elaboration and establishment of a versatile biomarker assay which allows statements regarding the replication of oncolytic viruses in mice based on serum samples. Besides the analysis of retrospective conditions, this test is able to serve as therapy-accompanying monitoring tool for virotherapy approaches with beta-glucuronidase-expressing viruses. The newly developed assay also served as complement to routinely used plaque assays as well as reference for virally expressed anti-angiogenic antibodies in additional preclinical studies. Further validation of this biomarker test is currently taking place in the context of clinical trials with GL-ONC1 (clinical grade GLV-1h68) and has already shown promising preliminary results. It was furthermore demonstrated that fluorogenic substrates in combination with beta-glucuronidase expressed by oncolytic viruses facilitated the optical detection of solid tumors in preclinical models. In addition to diagnostic purposes, virus-encoded enzymes could also be combined with prodrugs resulting in an improved therapeutic outcome of oncolytic virotherapy. In further studies, the visualization of virus-induced immune reactions as well as the establishment of innovative concepts to improve the therapeutic outcome of oncolytic virotherapy could be accomplished. In conclusion, the results of this thesis provide crucial findings about the influence of virally expressed beta-glucuronidase on various diagnostic concepts in the context of oncolytic virotherapy. In addition, innovative monitoring and therapeutic strategies could be established. Our preclinical findings have important clinical influence, particularly by the development of a therapy-associated biomarker assay which is currently used in different clinical trials. / Onkolytische Viren stellen einen vielversprechenden Therapieansatz dar, der die Behandlung von Krebserkrankungen revolutionieren könnte. Intensive präklinische und klinische Studien zeigen sowohl die körperliche Verträglichkeit von onkolytischen Viren, als auch deren Wirksamkeit gegenüber soliden Tumoren. Die Entwicklung von therapiebegleitenden Diagnose- und Monitoringkonzepten sowie eine Optimierung der Antitumorwirkung onkolytischer Viren stellen Eckpunkte der aktuellen Forschung auf dem Gebiet der Virotherapie dar. Im Rahmen dieser Arbeit wurde untersucht, welche diagnostischen und therapeutischen Möglichkeiten die virale Expression von beta-Glucuronidase durch den onkolytischen Vaccinia-Virus-Stamm GLV-1h68 eröffnet. In diesem Zusammenhang wurde ein, auf beta-Glucuronidase basierender, therapiebegleitender Biomarkertest entwickelt, dessen klinische Validierung derzeit stattfindet. Mit Hilfe von fluorogenen Substraten konnte die Aktivität viral exprimierter beta-Glucuronidase detektiert und quantifiziert werden. Dies lies direkte Rückschlüsse auf das Replikationsverhalten von onkolytischen Viren im Tiermodell zu und ermöglichte zudem Aussagen über die Zelllyse Virus-infizierter Krebszellen. Diese Erkenntnisse führten letztendlich zur Ausarbeitung und Etablierung eines vielseitig anwendbaren Biomarker-Assays, der es ermöglicht anhand von Blutproben Aussagen über das Replikationsverhalten onkolytischer Viren in Mäusen zu machen. Neben retrospektiven Analysen erlaubt dieser Test auch ein therapiebegleitendes Monitoring der onkolytischen Virotherapie mit beta-Glucuronidase-exprimierenden Viren. In weiteren präklinischen Untersuchungen diente der entwickelte Assay zudem als Ergänzung zum viralen Plaque Assays sowie als Referenz für Virus-exprimierte anti-angiogene Antikörper. Eine fortführende Validierung dieses neuartigen Biomarkertests findet derzeit im Rahmen humaner Studien mit der klinischen Formulierung von GLV-1h68, GL-ONC1, statt und zeigte bereits erste positive Resultate. Weiterhin konnte im Rahmen dieser Arbeit gezeigt werden, dass die Expression von beta-Glucuronidase durch onkolytische Viren in Verbindung mit fluoreszierenden Substraten eine optische Detektion von Karzinomen im präklinischen Tiermodell ermöglicht. Neben diagnostischen Zwecken, konnten Virus-kodierte Enzyme in Kombination mit Prodrugs genutzt werden, um den Therapieerfolg der onkolytischen Virotherapie zu verbessern. In zusätzlichen Studien konnten zudem Methoden zur Visualisierung der Virus-induzierten Immunantwort sowie neuartige Konzepte zur Therapieverbesserung etabliert werden. Zusammenfassend liefern die Ergebnisse der vorliegenden Arbeit wichtige Erkenntnisse über den Einfluss Virus-exprimierter beta-Glucuronidase auf unterschiedliche Diagnosekonzepte im Rahmen der onkolytischen Virotherapie. Daneben konnten entscheidende Erkenntnisse über den möglichen Einsatz neuer Monitoring- und Therapieansätze erzielt werden. Insbesondere durch die Entwicklung eines therapiebegleitenden Biomarkertests haben diese Resultate erheblichen Einfluss auf die weitere klinische Anwendung von onkolytischen Vaccinia-Viren.
102

Understanding the early interactions between vaccinia virus and dendritic cells - towards an enhanced vaccine vector.

Dunstan, Kerrie, Women's & Children's Health, Faculty of Medicine, UNSW January 2007 (has links)
In the post smallpox era, vaccinia virus (VACV) has emerged as an important candidate vaccine vector. As yet, the binding receptors and entry mechanisms utilised by the two infectious forms, IMV and EEV, in dendritic cells (DCs) are unknown. We have investigated the interactions between VACV and C-type lectin receptors (CLRs) that are known to be utilised by many other viruses for binding and entry in DCs. Using a variety of CLR ligands and inhibitors we were unable to inhibit IMV or EEV binding to MDDCs and we conclude that they do not bind to CLRs. We have also investigated VACV entry in MDDCs and show that both IMV and EEV enter MDDCs via an endocytic pathway. Using a variety of drugs that inhibit cellular processes we found IMV and EEV entry to be actin- and calcium-dependent. EEV entry was also cholesterol- and energy-dependent, whereas IMV entry was only partially dependent on these factors. Both IMV and EEV colocalised with endolysosomal markers. This data suggests that EEV may enter DCs via caveolin-mediated endocytosis whereas IMV entry can occur via multiple complementary mechanisms, including endocytosis and fusion. Macropinocytosis may also constitute a minor route of entry for IMV as entry was partially inhibited by dimethyl amiloride and the virus colocalised with dextran. Finally we have provided a comprehensive flow cytometric analysis of Toll-like receptor (TLR) expression at the protein level in MDDCs and monocyte-derived Langerhans cells (MDLCs) as models for different myeloid DC subsets. We found TLR expression to be cell type-specific and MDDCs expressed the full repertoire of TLRs 1-9, including small amounts of TLR8 and TLR9 on the cell surface. The expression of these TLRs that recognise nucleic acids on the surface of cells may constitute an early warning system for signalling the presence of viral invaders that would normally subvert the function of DCs. We also found TLR expression in mature cells to be dependent on the nature of the maturation stimulus (lipopolysaccharide versus cytokine/prostaglandin cocktail) and VACV infection induced profound down-regulation of all TLRs. These findings will have important implications for the rational design of VACV-vectored vaccines.
103

Potentiating the Oncolytic Efficacy of Poxviruses

Komar, Monica 26 July 2012 (has links)
Several wild-type poxviruses have emerged as potential oncolytic viruses (OVs), including orf virus (OrfV), and vaccinia virus (VV). Oncolytic VVs have been modified to include attenuating mutations that enhance their tumour selective nature, but these mutations also reduce overall viral fitness in cancer cells. Previous studies have shown that a VV (Western Reserve) with its E3L gene replaced with the E3L homologue from, OrfV (designated VV-E3LOrfV), maintained its ability to infect cells in vitro, but was attenuated compared to its parental VV in vivo. Our goal was to determine the safety and oncolytic potential VV-E3LOrfV, compared to wild type VV and other attenuated recombinants. VV-E3LOrfV, was unable to replicate to the same titers and was sensitive to IFN compared to its parental virus and other attenuated VVs in normal human fibroblast cells. The virus was also less pathogenic when administered in vivo. Viral replication, spread and cell killing, as measures of oncolytic potential in vitro, along with in vivo efficacy, were also observed.. The Parapoxvirus, OrfV has been shown to have a unique immune-stimulation profile, inducing a number of pro-inflammatory cytokines, as well as potently recruiting and activating a number of immune cells. Despite this unique profile, OrfV is limited in its ability to replicate and spread in human cancer cells. Various strategies were employed to enhance the oncolytic efficacy of wild-type OrfV. A transient transfection/infection screen was created to determine if any of the VV host-range genes (C7L, K1L, E3L or K3L) would augment OrfV oncolysis. Combination therapy, including the use of microtubule targeting agents, Viral Sensitizer (VSe) compounds and the addition of soluble VV B18R gene product were employed to see if they also enhance OrfV efficacy. Unfortunately, none of the strategies mentioned were able to enhance OrfV.
104

Vaccinia virus ribonucleotide reductase : regulation of the gene products and characterization of the recombinant small subunit protein

Howell, Meredith L. 15 May 1992 (has links)
Ribonucleotide reductase is a remarkable enzyme that catalyzes the rate-limiting step in the synthesis of the 2'-deoxynucleoside triphosphates. The intent of this project was to characterize the ribonucleotide reductase encoded by the orthopoxvirus, vaccinia. The first objective was to study the structural and functional features of the viral small subunit protein of ribonucleotide reductase. The viral reductase gene was engineered into an expression vector and expressed in Escherichia coli. The purified recombinant protein was then characterized and compared with other ribonucleotide reductase small subunits from different organisms. The physical characteristics of the vaccinia virus enzyme showed a strong similarity to the features of the mammalian counterpart. A second aim of this project was to establish the transcriptional and translational kinetics of ribonucleotide reductase gene expression during the time course of viral infection in cultured mammalian cells. In addition, the activity and stability of the enzyme in the viral system was measured and the accumulation of ribonucleotide reductase protein was quantitated. By also quantitating the accumulation of viral DNA synthesis, a direct comparison can be made between the the synthesis and utilization of deoxynucleotide precursors. A third objective of this work was to detail the mechanism by which hydroxyurea inactivates the vaccinia virus ribonucleotide reductase. Visible spectroscopy and electron paramagnetic resonance spectroscopy clearly demonstrated that the inhibitor destroys the free radical moiety in the viral small subunit protein. In addition, in vivo studies revealed that inhibition by hydroxyurea can be circumvented during viral infection. The exogenous addition of deoxyadenosine reversed the block to viral growth that was imposed by hydroxyurea, and stabilized hydroxyurea induced deoxynucleotide pool imbalances. These inhibition studies suggest that there may be a differential sensitivity of the enzyme towards hydroxyurea in the presence of various substrates. / Graduation date: 1993
105

Poxvirus Modulation of the Immune Response

Spesock, April January 2009 (has links)
<p>Orthopoxviruses encode many genes that are not essential for viral replication, which often account for differences in pathogenesis among otherwise closely related orthopoxviruses. Although dendritic cells (DCs) are essential to the generation of an effective anti-viral immune response, the effects of different orthopoxviruses on DC function is poorly understood. The objective of these studies was to determine the effect of different orthopoxviruses on DCs. Cowpox virus (CPXV) is ideally suited to this purpose because it encodes the largest and most representative set of accessory genes among orthopoxviruses, it is endemic in mouse populations, and can infect humans. </p><p>We hypothesized that CPXV would have novel mechanisms of evading the immune response that other orthopoxviruses lack, which may exert maximal effect in the context of antigen presenting cells such as DCs, allowing for discovery of novel viral strategies of immune evasion. To test this, CPXV was used to infected mouse bone marrow-derived DCs (BMDCs), and the effect of the virus on DC survival, expression of T-cell costimulatory molecules and cytokine production was determined. The effects of vaccinia virus strain Western Reserve (VV), the prototype of the species, and modified vaccinia virus strain Ankara (MVA), a promising vaccine vector, on mouse BMDCs were also determined. Confirming the hypothesis that CPXV would have different effects on mouse BMDCs from other orthopoxviruses, BMDCs infected with CPXV survived longer in culture than those infected with MVA or VV. In addition, CPXV specifically downregulated MHC I, MHC II, CD40, and CD86, and induced production of significant levels of IL-6 and IL-10.</p><p>Because IL-10 has many suppressive effects on the immune system, inducing IL-10 may provide a selective advantage to CPXV in vivo. To examine the role of IL-10 in a CPXV infection, wild type and IL-10 deficient mice were infected intranasally with CPXV. The effect of CPXV infection on disease morbidity, viral loads, inflammation and the protective immune response was determined. As expected, IL-10 was important in controlling inflammation during CPXV infection, but there was no effect on viral replication or clearance. Surprisingly, IL-10 was important in generation of a protective memory response to CPXV, which may reflect a novel role for IL-10 in the immune response.</p> / Dissertation
106

The mechanism of action of cidofovir and (S)-9-(3-hydroxy-2-phosphonomethoxypropyl)adenine against viral polymerases

Magee, Wendy C Unknown Date
No description available.
107

The mechanism of action of cidofovir and (S)-9-(3-hydroxy-2-phosphonomethoxypropyl)adenine against viral polymerases

Magee, Wendy C 11 1900 (has links)
The nucleoside phosphonates cidofovir (CDV) and (S)-9-[3-hydroxy-(2-phosphonomethoxy)propyl]adenine [(S)-HPMPA] are analogs of dCMP and dAMP, respectively. Collectively these drugs are effective inhibitors of a wide range of DNA viruses, RNA viruses, and retroviruses. Because they are nucleotide analogs, the drugs are thought to target viral polymerases and inhibit viral genome replication. However, the precise mechanism by which these drugs block viral growth remains unclear. We have studied the mechanism of action of these antivirals against three viral polymerases, vaccinia virus DNA polymerase and the reverse transcriptases from human immunodeficiency virus type 1 (HIV-1) and Moloney murine leukemia virus (MMLV). In vitro experiments using the active intracellular metabolites of CDV and (S)-HPMPA, CDV diphosphate (CDVpp) and (S)-HPMPA diphosphate [(S)-HPMPApp], respectively, showed that the drugs are substrates for each enzyme and can be incorporated into DNA without causing chain termination, although the rate of DNA elongation catalyzed by the vaccinia virus and MMLV polymerases is slowed. We have also found that incorporation of CDV or (S)-HPMPA blocked the 3′-to-5′ proofreading exonuclease activity of the vaccinia virus DNA polymerase. In addition, we determined that when these drugs are incorporated into a template DNA strand, they inhibited replication across the drug lesion. These results indicate that although CDV and (S)-HPMPA can inhibit some enzymes when incorporated into the primer strand, the main effects of drug action occur when they are incorporated into the template strand. Our findings point to a new avenue of targeted drug design, one in which nucleoside or nucleotide analogues are efficient substrates for the viral nucleic acid polymerase, do not inhibit primer strand elongation, but exert their effects in subsequent rounds of nucleic acid synthesis. / Virology
108

Understanding the early interactions between vaccinia virus and dendritic cells - towards an enhanced vaccine vector.

Dunstan, Kerrie, Women's & Children's Health, Faculty of Medicine, UNSW January 2007 (has links)
In the post smallpox era, vaccinia virus (VACV) has emerged as an important candidate vaccine vector. As yet, the binding receptors and entry mechanisms utilised by the two infectious forms, IMV and EEV, in dendritic cells (DCs) are unknown. We have investigated the interactions between VACV and C-type lectin receptors (CLRs) that are known to be utilised by many other viruses for binding and entry in DCs. Using a variety of CLR ligands and inhibitors we were unable to inhibit IMV or EEV binding to MDDCs and we conclude that they do not bind to CLRs. We have also investigated VACV entry in MDDCs and show that both IMV and EEV enter MDDCs via an endocytic pathway. Using a variety of drugs that inhibit cellular processes we found IMV and EEV entry to be actin- and calcium-dependent. EEV entry was also cholesterol- and energy-dependent, whereas IMV entry was only partially dependent on these factors. Both IMV and EEV colocalised with endolysosomal markers. This data suggests that EEV may enter DCs via caveolin-mediated endocytosis whereas IMV entry can occur via multiple complementary mechanisms, including endocytosis and fusion. Macropinocytosis may also constitute a minor route of entry for IMV as entry was partially inhibited by dimethyl amiloride and the virus colocalised with dextran. Finally we have provided a comprehensive flow cytometric analysis of Toll-like receptor (TLR) expression at the protein level in MDDCs and monocyte-derived Langerhans cells (MDLCs) as models for different myeloid DC subsets. We found TLR expression to be cell type-specific and MDDCs expressed the full repertoire of TLRs 1-9, including small amounts of TLR8 and TLR9 on the cell surface. The expression of these TLRs that recognise nucleic acids on the surface of cells may constitute an early warning system for signalling the presence of viral invaders that would normally subvert the function of DCs. We also found TLR expression in mature cells to be dependent on the nature of the maturation stimulus (lipopolysaccharide versus cytokine/prostaglandin cocktail) and VACV infection induced profound down-regulation of all TLRs. These findings will have important implications for the rational design of VACV-vectored vaccines.
109

The role of keratan sulphate in the modulation of aggrecanase activity

Poon, C. J. January 2005 (has links)
Arthritis is a debilitating disease of the joints caused by the accelerated breakdown of cartilage, resulting in painful, swollen joints. Cartilage protects the joint by absorbing the shock that would otherwise be transferred directly to the underlying bone. One crucial component of cartilage is a specialised molecule known as aggrecan. Aggrecan consists of a core protein with three globular domains (G1, G2 and G3) and is modified with over one hundred highly sulphated glycosaminoglycan chains. Two types of glycosaminoglycans are substituted along the length of the protein, chondroitin sulphate and keratan sulphate. The glycosaminoglycans impart a highly negative charge to the tissue, giving it the ability to retain water and resist compressive forces. / Aggrecan is lost from cartilage following cleavage by aggrecanases. Too little aggrecan in cartilage destabilises the structural integrity of the tissue and is associated with arthritis. Of the five known aggrecanase cleavage sites, it is cleavage within the interglobular domain (IGD) between the G1 and G2 domains at NITEGE373 - 374ARGSVI that directly contributes to loss of aggrecan function. / The chondroitin sulphate and keratan sulphate located between the G2 and G3 domains is responsible for maintaining the biomechanical properties of aggrecan. The role of keratan sulphate within the G1-G2 domain is unknown, but it is not thought to be essential for aggrecan function. However the literature suggests a possible role of keratan sulphate in facilitating aggrecanase cleavage of NITEGE373 - 374ARGSVI in the IGD. The aim of my project was to examine the role of keratan sulphate in aggrecanase-mediated cleavage of aggrecan in the IGD. Three major goals have been accomplished in this thesis: 1) Identification of a cell type capable of sustained keratan sulphate synthesis. 2) Expression of a recombinant G1-G2 protein substituted with keratan sulphate (rG1-G2). 3) Demonstration that endogenous N-linked keratan sulphate is sufficient to potentiate aggrecanase cleavage of rG1-G2 in the IGD. / Cultured cells do not synthesise keratan sulphate. Therefore identifying a cell type, and culture conditions to maximise keratan sulphate synthesis, was a major undertaking. Conditions were identified which allowed for maximal keratan sulphate synthesis, albeit on a small scale, in primary bovine keratocytes. Using a Vaccinia virus expression system, recombinant G1-G2 was expressed in primary bovine keratocytes. / Analysis of the rG1-G2 revealed that it was substituted with 5 kDa of keratan sulphate. One important aspect of the study was that the keratan sulphate was all N-linked to the core protein. Subsequent aggrecanase digests, comparing substrates before and after removal of keratan sulphate, showed that aggrecanase cleavage was markedly more efficient when keratan sulphate was present. The results contained in this thesis add significantly to the established literature by providing a greater understanding of the mechanisms involved in aggrecanase-mediated cleavage of aggrecan and cartilage destruction. The results suggest that aggrecan substitution with N-linked keratan sulphate potentiates aggrecanase activity. The results from this study identify N-linked keratan sulphate as a possible target for the development of new drugs for the management of arthritis.
110

Investigation of the mechanisms of ozone-mediated viral inactivation /

Ohmine, Seiga, January 2005 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Microbiology and Molecular Biology, 2005. / Includes bibliographical references.

Page generated in 0.029 seconds