• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 69
  • 24
  • 13
  • 7
  • 6
  • 6
  • 4
  • 2
  • Tagged with
  • 151
  • 116
  • 33
  • 24
  • 16
  • 16
  • 16
  • 14
  • 12
  • 11
  • 11
  • 11
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Développement d'un vecteur virus de la vaccine, réplicatif et atténué, pour la vaccination antivariolique et pour la vaccination contre la fièvre hémorragique à virus Ebola / Development of an attenuated replicative Vaccinia virus vector to protect against Variola and Ebola haemorragic fever

Dimier, Julie 30 October 2012 (has links)
Le virus Ebola, responsable d'une fièvre hémorragique virale létale et le virus de la variole, agent étiologique de la variole, sont des armes biologiques potentielles. Il n'existe pas de traitement ou de prophylaxie autorisés contre le virus Ebola, quelques candidats vaccins étant en cours de développement. Concernant la variole, des vaccins dits de première génération (virus de la vaccine) ont permis l'éradication de la maladie cependant ils sont à l'origine de complications post-vaccinales parfois sévères alors que des vaccins plus récents dits de troisième génération, non-réplicatifs, ont été développés pour leur innocuité mais restent faiblement immunogènes. Nous avons récemment développé plusieurs vecteurs viraux de type virus de la vaccine (VACV) par délétion d'un certain nombre de facteurs de virulence. Nous avons évalué leur innocuité, leur immunogénicité et leur efficacité en tant que candidats vaccins antivarioliques chez la souris puis utilisé l'un de ces vecteurs pour développer un candidat vaccin bivalent antivariolique et anti-virus Ebola. Ces virus de la vaccine délétés sont réplicatifs mais fortement atténués. Ils induisent une réponse en anticorps neutralisants spécifiques anti-vaccine similaire à celle induite par le vaccin antivariolique de première génération et induisent des réponses immunitaires cellulaires CD4+ et CD8+ spécifiques suffisantes pour protéger l'animal d'un challenge létal de cowpoxvirus en intranasal, simulant une infection par le virus de la variole. Le virus délété le plus immunogène et le plus sûr, nommé MVL, a été utilisé pour construire un vecteur viral codant pour la glycoprotéine du virus Ebola (EGP). Le gène entier d'EGP ou une forme chimérique d'EGP (fusion entre l'ectodomaine d'EGP et le domaine transmembranaire de la glycoprotéine B5 du VACV) ont été clonés dans le génome du vecteur viral. Ces deux vecteurs produisent des virus ayant incorporé EGP dans leur enveloppe. Ces deux candidats vaccins recombinants induisent de fortes réponses humorales spécifiques anti-EGP et anti-vaccine chez la souris immunocompétente. En conclusion, nous avons développé plusieurs candidats vaccins antivarioliques aussi immunogènes et efficaces que le vaccin historique et avec une atténuation similaire aux vaccins de troisième génération. L'un de ces candidats (MVL) a été utilisé comme vecteur viral pour exprimer la glycoprotéine hétérologue EGP, contre laquelle il induit une réponse immunitaire humorale forte / Ebola virus, causing a lethal haemorrhagic fever and variola virus, the agent of smallpox are potential biological weapons. There is no treatment and no prophylaxis authorised against Ebola, although some vaccine viral vectors were developed these last years. Concerning smallpox, several types of vaccines exist against smallpox (based on vaccinia virus), first generation that allowed the disease eradication but responsible of some post-vaccination complications and some non-replicative 3rd generation vaccines which are safe but not very immunogenic. We have recently developed several vaccinia virus (VACV) vectors by deletion of some virulence genes, and we have evaluated their safety, immunogenicity and efficacy as smallpox vaccine in mice and used one of them as a bivalent vaccine against Ebola and smallpox. These viral vectors are higly attenuated and replicative competent. They induce a neutralizing specific-VACV antibodies response similar to that of the historical vaccine and induce VACV-specific CD8+ and CD4+ immune responses efficient to protect immunocompetent mouse model intranasally infected by cowpox virus, simulating variola virus infection.The most safety and immunogenic vaccinia virus vector, named MVL, has been used to construct a vector encoding the Ebola glycoprotein (EGP) for immunization against Ebola. The native EGP gene or a chimeric EGP gene (a fusion between the EGP ectodomain and the transmembrane domain of the VACV B5 glycoprotein) have been cloned into the viral vector genome. These two recombinant vaccine candidates induce specific humoral immune responses against Ebola and vaccinia virus in immunocompetent mice. In conclusion, we have developed several vaccine candidates against smallpox as immunogenic and protective as the historical vaccine and as safe as 3rd generation vaccines. One of these candidates, MVL, has been used as a viral vector to express the heterologous glycoprotein EGP, against which it induce a strong humoral immune response.
132

New approaches for improving the immunogenicity of modified vaccinia virus Ankara as a recombinant vaccine vector

Alharbi, Naif K. January 2014 (has links)
No description available.
133

Selection and characterization of human recombinant antibodies against Orthopoxviruses from an immunoglobulin library and mapping of functional epitopes of Vaccinia virus surface proteins

Ahsendorf, Henrike 04 November 2019 (has links)
No description available.
134

Efficacy of Liming Forest Soil in the Context of African Swine Fever Virus

Tanneberger, Franziska, Abd El Wahed, Ahmed, Fischer, Melina, Deutschmann, Paul, Roszyk, Hanna, Carrau, Tessa, Blome, Sandra, Truyen, Uwe 13 June 2023 (has links)
Since September 2020, Germany has experienced the first ever outbreak of African swine fever (ASF). The first known cases occurred exclusively in wild boar in forest areas in Brandenburg and Saxony; in July 2021, infected domestic pigs were also confirmed for the first time. As wild boar are considered the main reservoir for the virus in the European region, an effective interruption of this infection chain is essential. In particular, the removal and safe disposal of infected carcasses and the direct disinfection of contaminated, unpaved ground are priorities in this regard. For the disinfection, highly potent as well as environmentally compatible disinfectants must be used, which are neither influenced in their effectiveness by the soil condition nor by increased organic contamination. Thus, in this study, slaked lime, milk of lime and quicklime (1% to 10% solutions) were selected for efficacy testing against the test virus recommended by the German Veterinary Society (DVG), Modified Vaccinia Ankara virus (MVAV), and ASF virus (ASFV) in conjunction with six different forest soils from Saxony in two different soil layers (top soil and mineral soil) each. In summary, 10% of any tested lime type is able to inactivate both MVAV and ASFV under conditions of high organic load and independent of the water content of the soil. At least a 4 log reduction of the virus titer in all tested forest soil types and layers and by all applied lime types was observed. In conclusion, the high efficacy and suitability of all tested lime products against both viruses and in the presence of high organic load in forest soil can be confirmed and will help to control ASF spread.
135

Investigation of the mechanisms of ozone-mediated viral inactivation

Ohmine, Seiga 10 July 2005 (has links) (PDF)
Previous studies have established that ozone-oxygen mixtures can be used to inactivate a variety of microorganisms including bacteria, fungi and viruses. Ozone is a potent reactive oxygen species (ROS) that rapidly decays into a variety of additional short half-life ROS which have been shown to cause oxidative damage to biological molecules. I hypothesize that controlled ozone exposure and the subsequent generation of additional ROS would reduce viral infectivity by lipid and/or protein peroxidation. A proprietary ozone-oxygen delivery system was used to inactivate a series of enveloped [herpes simplex virus type-1 strain McIntyre (HSV-1), vaccinia strain Elstree (VAC), vesicular stomatitis virus strain Indiana (VSV), and influenza A strain (H1N1) A/WS/33] and non-enveloped [human adenovirus type2 (Ad2)] viruses. Plaque reduction and suspension-infection viral antigen assays were used to determine inactivation kinetics. After ozonation, HSV-1 and VSV lost up to 6 log10 infectious particles in 15 min, while VAC and influenza A lost up to 5 log10 in 40 min and 30 min, respectively. In comparison, the non-enveloped Ad2 lost up to 5 log10 in 60 min. Increasing amounts of serum supplementation in the ozone treated virus suspensions slowed the rate of inactivation in both enveloped and non-enveloped viruses, suggesting the protective effect of serum against ozone. Lipid peroxidation was determined through a chromogenic assay for malondialdehyde (MDA), a byproduct of peroxidation events. MDA concentrations were inversely correlated with virus infectivity, as MDA concentrations elevated with virus exposure time to ozone. Transmission electron microscopy images of Ad2, HSV-1, VAC and VSV confirmed the drastic morphological changes that resulted from ozone treatment. The ROS-mediated attack compromised the integrity of the lipid envelopes and protein shells of the viruses. These data suggest that a wide range of viruses can be inactivated through use of an innovative ozone delivery system, thus validating my hypothesis.
136

Immunmodulation durch Parapocken-Viren: Identifikation und Analyse funktionaler Viruskomponenten

Scholz, Kai 29 July 2003 (has links) (PDF)
Fusionspeptid-, Redox-, Viruscore- und sonstige Proteine. Alle analysierten Single ORF (SO)-VVOV Rekombinanten vermittelten einen signifikanten Schutz vor einer tödlichen Belastung mit Aujeszky-Virus. Zwei der Rekombinanten (SO 93-, SO 94-VVOV) enthalten ORFs, die für ATI/Fusionspeptid-Proteine kodieren. In SO 19- und SO 70-VVOV sind dagegen für Redoxproteine kodierende ORFs integriert. Weiterführende Untersuchungen zeigten, dass SO 94- und SO 19-VVOV in zwei weiteren Modellsystemen immunstimulatorisch aktiv sind. Im Baculo-Virussystem exprimierte Proteine waren nur in Kombination mit Vaccinia Lister-Virus (VV) wirksam. Dabei zeigten jeweils Virus-Protein-Gemische mit dem geringsten Proteinanteil den stärksten immunstimulatorischen Effekt. Proben in denen VV durch bovines Herpes-Virus-1 ersetzt wurde, sind dagegen nicht wirksam. Dies lässt auf eine Beteiligung VV-spezifischer Faktoren schließen. Übereinstimmend mit diesen Ergebnissen führte eine Frameshift-Mutation in ORF 94r von SO 94mut-VVOV nur zur Abschwächung und nicht zum vollständigen Verlust der immunstimulatorischen Wirkung. Beide in Schizosaccharomyces pombe exprimierten Proteine, sp-ORF19 und sp-ORF94r, induzierten keinen signifikanten Schutz im Aujeszky Maus Modell. Mit der Identifikation einzelner immunstimulatorisch aktiver PPVO-Komponenten ist es erstmals gelungen, den paramunisierenden Effekt von Parapox-Viren einzelnen viralen Genen zu zuordnen. Insbesondere stellen SO 94- und SO 19-VVOV viel versprechende Kandidaten für die prophylaktische bzw. therapeutische Anwendung in verschiedenen Indikationen als auch für weitere Untersuchungen des Wirkmechanismus dar.
137

Immunmodulation durch Parapocken-Viren: Identifikation und Analyse funktionaler Viruskomponenten

Scholz, Kai 07 August 2003 (has links)
Fusionspeptid-, Redox-, Viruscore- und sonstige Proteine. Alle analysierten Single ORF (SO)-VVOV Rekombinanten vermittelten einen signifikanten Schutz vor einer tödlichen Belastung mit Aujeszky-Virus. Zwei der Rekombinanten (SO 93-, SO 94-VVOV) enthalten ORFs, die für ATI/Fusionspeptid-Proteine kodieren. In SO 19- und SO 70-VVOV sind dagegen für Redoxproteine kodierende ORFs integriert. Weiterführende Untersuchungen zeigten, dass SO 94- und SO 19-VVOV in zwei weiteren Modellsystemen immunstimulatorisch aktiv sind. Im Baculo-Virussystem exprimierte Proteine waren nur in Kombination mit Vaccinia Lister-Virus (VV) wirksam. Dabei zeigten jeweils Virus-Protein-Gemische mit dem geringsten Proteinanteil den stärksten immunstimulatorischen Effekt. Proben in denen VV durch bovines Herpes-Virus-1 ersetzt wurde, sind dagegen nicht wirksam. Dies lässt auf eine Beteiligung VV-spezifischer Faktoren schließen. Übereinstimmend mit diesen Ergebnissen führte eine Frameshift-Mutation in ORF 94r von SO 94mut-VVOV nur zur Abschwächung und nicht zum vollständigen Verlust der immunstimulatorischen Wirkung. Beide in Schizosaccharomyces pombe exprimierten Proteine, sp-ORF19 und sp-ORF94r, induzierten keinen signifikanten Schutz im Aujeszky Maus Modell. Mit der Identifikation einzelner immunstimulatorisch aktiver PPVO-Komponenten ist es erstmals gelungen, den paramunisierenden Effekt von Parapox-Viren einzelnen viralen Genen zu zuordnen. Insbesondere stellen SO 94- und SO 19-VVOV viel versprechende Kandidaten für die prophylaktische bzw. therapeutische Anwendung in verschiedenen Indikationen als auch für weitere Untersuchungen des Wirkmechanismus dar.
138

Investigations into the vaccinia virus immunomodulatory proteins C4 and C16

Scutts, Simon Robert January 2017 (has links)
Vaccinia virus (VACV) is the most intensively studied orthopoxvirus and acts as an excellent model to investigate host-pathogen interactions. VACV encodes about 200 proteins, many of which modulate the immune response. This study focusses on two of these: C16 and C4, that share 43.7 % amino acid identity. Given the sequence similarity, we explored whether C16 and C4 have any shared functions, whilst also searching for novel functions. To gain mechanistic insight, we sought to identify binding partners and determine the residues responsible. C16 has two reported functions. Firstly, it inhibits DNA-PK-mediated DNA sensing, and this study found that C4 can perform this function as well. Like C16, C4 associates with the Ku heterodimer to block its binding to DNA leading to reduced production of cytokines and chemokines. For both proteins, the function localised to the C termini and was abrogated by mutating three residues. Secondly, C16 induces a hypoxic response by binding to PHD2. This function was mapped to the N-terminal 156 residues and a full length C16 mutant (D70K,D82K) lost the ability to induce a hypoxic response. In contrast, C4 did not bind PHD2. C4 inhibits NF-κB signalling by an unknown mechanism. Reporter gene assays showed that C16 also suppresses NF-κB activity and, intriguingly, this was carried out by both the N and C termini. C16 acts at or downstream of p65 and the N terminus of C16 associated with p65 independently of PHD2-binding. Conversely, C4 acted upstream of p65, did not display an interaction with p65, and the function was restricted to its C-terminal region. Novel binding partners were identified by a screen utilising tandem mass tagging and mass spectrometry, and selected hits were validated. The C terminus of C16 associated with VACV protein K1, a known NF-κB inhibitor. Additionally, C16 bound to the transcriptional regulator ARID4B. C4 did not interact with these proteins, but the N-terminal region of C4 associated with filamins A and B. The functional consequences of these interactions remain to be determined. In vivo, C4 and C16 share some redundancy in that a double deletion virus exhibits an attenuated virulence phenotype that is not observed by single deletion viruses in the intradermal model of infection. However, non-redundant functions also contribute to virulence in that both single deletion viruses display attenuated virulence compared to a wild-type Western Reserve virus in the intranasal model of infection. Data presented also reveal that C4 inhibits the recruitment of immune cells to the site of infection, as was previously described for C16. Overall, this investigation highlights the complexity of host-pathogen interactions showing that VACV encodes two multifunctional proteins with both shared and unique functions. Moreover, their inhibition of DNA-PK emphasises the importance of this PRR as a DNA sensor in vivo.
139

Untersuchung von rekombinantem Vacciniavirus MVA zur Entwicklung von Impfstoffen gegen Infektionen mit Respiratorischen Synzytialviren / Evaluation and construction of recombinant modified vaccinia virus Ankara as candidate vector vaccine against infections with respiratory syncytial viruses

Süzer, Yasemin 08 January 2008 (has links) (PDF)
In dieser Arbeit wurden Vektorimpfstoffe auf der Basis rekombinanter Vacciniaviren hinsichtlich ihrer Eignung zur Immunisierung gegen Infektionen mit Respiratorischen Synzytialviren (RSV) untersucht. Hierfür standen genetisches Material und Viruspräparationen des Respiratorischen Synzytialvirus des Rindes (BRSV, Stamm Odijk) sowie des Respiratorischen Synzytialvirus des Menschen (HRSV, Subtyp A2) sowie rekombinante Vacciniaviren MVA-HRSV-F bzw. MVA-HRSV-G zur Verfügung. Rekombinante MVA-Viren, welche die Gene der BRSV-Oberflächenproteine G und F (MVA-BRSV-F, MVA-BRSV-G, MVA-BRSV-Gneu), sowie Viren in welchen die Fremdgensequenzen durch Deletion wieder entfernt sind (Revertante Viren MVA-∆BRSV-F und MVA-∆BRSV-G), wurden gentechnologisch hergestellt. Alle rekombinanten MVA-Viren wurden molekular-virologisch charakterisiert und dienten zur Gewinnung und Prüfung von Testimpfstoffen im Tiermodell. Die Untersuchungen zeigen: 1. Alle neu konstruierten rekombinanten MVA-BRSV-Viren produzierten nach Infektion von Zellkulturen die erwünschten Zielantigene, die BRSV-Glykoproteine F und G. Für das durch MVA-Expression hergestellte BRSV-F-Glykoprotein konnte außerdem die biologische Funktionalität in einem Fusionstest in infizierten HeLa-Zellen nachgewiesen werden. 2. Die Charakterisierung der Genome aller MVA-BRSV- sowie MVA-HRSV-Vektorviren bestätigte die exakte Insertion der Fremdgensequenzen im anvisierten Genombereich und zeigte die genetische Stabilität der Virusisolate nach Passagierung. 3. Bei der Untersuchung des Wachstumsverhaltens von MVA-BRSV-F und MVA-BRSV-G zeigte sich die eingeschränkte Vermehrungsfähigkeit des Virus MVA-BRSV-G. Die Konstruktion und Untersuchung der revertanten Viren MVA-∆BRSV-F und MVA-∆BRSV-G belegte die Koproduktion des G-Proteins als Ursache des verminderten Replikationsvermögens. Dieser für ein mögliches Impfvirus erhebliche Nachteil konnte durch die Verwendung eines moderateren Vacciniavirus-Promotors zur Fremdgenexpression (rekombinantes Virus MVA-BRSV-Gneu) behoben werden. 4. Die Prüfung von Testimpfstoffen auf der Grundlage der rekombinanten MVA-HRSV-Viren in einem Maus-HRSV-Infektionsmodell zeigte, dass MVA-HRSV-Impfstoffe, im Gegensatz zu Impfstoffen aus mit Formalin-inaktiviertem HRSV, Immunantworten mit einem ausgewogenen TH1/TH2-assoziierten Zytokinprofil induzierten. Eine infolge von Immunisierung verstärkte Einwanderung eosinophiler Zellen (Marker für Immunpathogenese) in die Lungen HRSV-infizierter Tiere, konnte nach MVA-Impfung nicht beziehungsweise in nur sehr geringem Ausmaß festgestellt werden (OLSZEWSKA et al. 2004). 5. Wichtige erste Daten hinsichtlich der Verträglichkeit, Immunogenität und Schutzwirkung rekombinanter Impfstoffe auf der Basis von MVA-BRSV-F und MVA-BRSV-G konnten in einem Kälber BRSV-Infektionsmodell erhoben werden. Die zweimalige Immunisierung mit MVA-Impfstoff verlief bei allen Tieren ohne feststellbare Nebenwirkungen und die Anregung Vaccinia- bzw. BRSV-F-spezifischer Antikörper bestätigte die Immunogenität der Vektorvakzinen. Schließlich belegten klinische Daten, insbesondere die fehlende Fieberreaktion bei Impflingen nach BRSV-Belastungsinfektion, die Schutzwirkung der MVA-BRSV-Impfstoffe. Insgesamt unterstützen die erzielten Ergebnisse dieser Arbeiten die weitere präklinische und klinische Untersuchung von MVA-Vektorimpfstoffen zur wirksameren und sichereren Bekämpfung von Infektionen mit Respiratorischen Synzytialviren. / This study investigated vector vaccines based on recombinant vaccinia virus MVA for their suitability to immunize against infections with respiratory syncytial viruses. Genetic material and virus stocks of bovine respiratory syncytial virus (BRSV, Strain Odijk) and human respiratory syncytial virus (HRSV, Strain A2) and recombinant vaccinia viruses MVA-HRSV-F and MVA-HRSV-G were provided and used in this study. The project work included the genetical engineering of recombinant MVA expressing gene sequences encoding the BRSV surface proteins G and F (MVA-BRSV-F, MVA-BRSV-G, MVA-BRSV-Gneu) and the secondary generation of mutant viruses in which recombinant gene sequences have been removed (revertant viruses MVA-∆BRSV-F, MVA-∆BRSV-G). All recombinant MVA were carefully characterized in in vitro experiments and served for generation of vaccine preparations being tested in animal model systems. The investigations demonstrate: 1. All recombinant MVA-BRSV viruses produced the target antigens (BRSV-F and -G proteins) upon tissue culture infections. Functional activity of BRSV-F protein was demonstrated in a cell fusion assay using virus-infected HeLa cells. 2. The characterization of the genomes of all MVA recombinant viruses confirmed the correct insertion of foreign gene sequences into the target site of the MVA genome and demonstrated the genetic stability of the vector viruses upon tissue culture passage. 3. In vitro studies on virus growth revealed a reduced replicative capacity of the recombinant virus MVA-BRSV-G. Construction and growth analysis of revertant viruses MVA-∆BRSV-F and MVA-∆BRSV-G demonstrated that over expression of BRSV-G protein caused this replication deficiency which could be avoided by using a more moderate vaccinia virus promoter for transcriptional control of recombinant gene expression (recombinant virus MVA-BRSV-Gneu). 4. Upon characterization in a mouse-HRSV challenge model candidate vaccines based on recombinant MVA-HRSV viruses, in contrast to formalin inactivated HRSV, and induced a well balanced TH1 and TH2 cytokine profile. In addition, none of the MVA-HRSV-F vaccinated animals and only two of the MVA-HRSV-G immunized mice showed low-level eosinophilia in the lungs after HRSV challenge infection (OLSZEWSKA et al. 2004). 5. Vaccination experiments in the calf-BRSV challenge model generated first relevant data on safety, immunogenicity and protective capacity of MVA-BRSV recombinant vaccines. The repeated application of MVA vaccine was well tolerated by all vaccinated animals and the induction of vaccinia- and BRSV-F-specific antibody responses confirmed the immunogenicity of the MVA vector vaccines. Moreover, clinical data (lack of fever response in vaccines) suggested the protective capacity of MVA-BRSV immunization upon BRSV challenge. The obtained results from these studies clearly support further preclinical and clinical evaluation of recombinant MVA candidate vaccines to immunize against disease caused by RSV infections in cattle and humans.
140

Activation and Role of Memory CD8 T Cells in Heterologous Antiviral Immunity and Immunopathology in the Lung: A Dissertation

Chen, Hong 09 December 2002 (has links)
Each individual experiences many sequential infections throughout the lifetime. An increasing body of work indicates that prior exposure to unrelated pathogens can greatly alter the disease course during a later infection. This can be a consequence of a phenomenon known as heterologous immunity. Most viruses invade the host through the mucosa of a variety of organs and tissues. Using the intranasal mucosal route of infection, the thesis focused on studying modulation of lymphocytic choriomeningitis virus (LCMV)-specific memory CD8 T cells upon respiratory vaccinia virus (VV) infection and the role of these memory CD8 T cells in heterologous immunity against VV and altered immunopathology in the lung. The VV infection had a profound impact on memory T cells specific for LCMV. The impact included the up-regulation of CD69 expression on LCMV-specific CD8 memory T cells and the activation of their in vivoIFN-γ production and cytotoxic function. Some of these antigen-specific memory T cells selectively expanded in number, resulting in modulation of the original LCMV-specific T cell repertoire. In addition, there was a selective organ-dependent redistribution of these LCMV-specific memory T cell populations in secondary lymphoid tissue (the mediastinal lymph node and spleen) and the non-lymphoid peripheral (the lung) organs. The presence of these LCMV-specific memory T cells correlated with IFN-γ-dependent enhanced VV clearance, decreased mortality and marked changes in lung immunopathology. Thus, the participation of pre-existing memory T cells specific for unrelated agents can alter the dynamics of mucosal immunity. This is associated with an altered disease course in response to a pathogen. The roles for T cell cross-reactivity and cytokines in the modulation of memory CD8 T cells during heterologous memory CD8 T cell-mediated immunity and immunopathology were investigated. Upon VV challenge, there were preferential expansions of several LCMV-specific memory CD8 T cell populations. This selectivity suggested that cross-reactive responses played a role in this expansion. Moreover, a VV peptide, partially homologous to LCMV NP 205, stimulated LCMV-NP205 specific CD8 T cells, suggesting that NP205 may be a cross-reactive epitope. Poly I:C treatment of LCMV-immune mice resulted in a transient increase but no repertoire alteration of LCMV-epitope-specific CD8 T cells. These T cells did not produce IFN-γ in vivo. These results imply that poly I:C, presumably through its induced cytokines, was assisting in initial recruitment of LCMV-specific memory CD8 T cells in a nonspecific manner. VV challenge of LCMV-immune IL-12KO mice resulted in activation and slightly decreased accumulation of LCMV-specific CD8 T cells. Moreover, there was a dramatic reduction of in vivoIFN-γ production by LCMV-specific IL-12KO CD8 T cells in the lung. I interpreted this to mean that IL-12 was important to augment IFN-γ production by memory CD8 T cells upon TCR engagement by antigens and to induce further accumulation of activated memory CD8 T cells during the heterologous viral infection. This thesis also systematically examined what effect the sequence of two heterologous virus challenges had on viral clearance, early cytokine profiles and immunopathology in the lung after infecting mice immune to one virus with another unrelated viruses. Four unrelated viruses, [LCMV, VV, influenza A virus or murine cytomegalovirus (MCMV)], were used. There were many common changes observed in the acute response to VV as a consequence of prior immunity to any of three viruses, LCMV, MCMV or influenza A virus. These included the enhanced clearance of VV in the lung, associated with enhanced TH1 type responses with increased IFN-γ and suppressed pro-inflammatory responses. However, immunity to the three different viruses resulted in unique pathologies in the VV-infected lungs, but with one common feature, the substitution of lymphocytic and chronic mononuclear infiltrates for the usual acute polymorphonuclear response seen in non-immune mice. Immunity to influenza A virus appeared to influence the outcome of subsequent acute infections with any of the three viruses, VV, LCMV and MCMV. Most notably, influenza A virus-immunity protected against VV but it actually enhanced LCMV and MCMV titers. This enhanced MCMV replication was associated with enhanced TH1 type response and pro-inflammatory cytokine responses. Immunity to influenza A virus appeared to dramatically enhance the mild lymphocytic and chronic mononuclear response usually observed during acute infection with either LCMV or MCMV in non-immune mice, but LCMV infection and MCM infection of influenza A virus-immune mice each had its own unique features. Thus, the specific sequence of virus infections controls the outcome of disease.

Page generated in 0.0267 seconds