281 |
O Value at Risk e a ilusão de proteção : do risco moral ao Black SwanFrasson, Álvaro Salgado January 2015 (has links)
A pesquisa traz uma crítica à teoria moderna de finanças em relação à política de gestão de risco, especificamente sobre o Value at Risk, e como ela afeta o risco na economia. O trabalho propõe uma discussão comportamental da ineficácia do VaR e como este tipo de informação pode ser ruim para a economia, por refletir no problema do moral hazard (risco moral) para os gestores, baseados na ilusão de compreensão, ilusão de validade e de habilidade. A dissertação conclui que,ao superestimar a informação do VaR, os agentes alteram seu comportamento para tomar decisão e, com este risco moral, podem gerar o problema dos black swans (cisnes negros). / The research brings a critique of modern finance theory in relation to risk management policy, specifically on the Value at Risk, and how this affects the risk in the economy. The paper proposes a behavioral discussion of VaR ineffectiveness and how such information may be bad in the economy, for reflecting on the moral hazard problem for managers, based on the illusion of understanding, illusion of validity and ability. The dissertation concludes that, to overestimate VaR information, the agents change their behavior to take this decision and, this moral hazard, can generate the black swans.
|
282 |
Avaliação de valores em risco em séries de retorno financeiro / Value at risk evaluation in financial return time seriesGomes, Camilla Ferreira 18 December 2017 (has links)
Os métodos geralmente empregados no mercado para o cálculo de medidas de risco baseiam-se na distribuição adotada para os retornos financeiros. Quando a distribuição Normal é adotada, estas avaliações tendem a subestimar o Value at Risk (valor em risco - VaR), pois a distribuição Normal tem caudas mais leves que as observadas nas séries financeiras. Muitas distribuições alternativas vêm sendo propostas na literatura, contudo qualquer modelo alternativo proposto deve ser avaliado com relação ao esforço computacional gasto para cálculo do valor em risco e comparado à simplicidade proporcionada pelo uso da distribuição Normal. Dessa forma, esta dissertação visa avaliar alguns modelos para cálculo do valor em risco, como a modelagem por quantis empíricos, a distribuição Normal e o modelo autorregressivo (AR), para verificação do melhor ajuste à cauda das distribuições das séries de retornos financeiros, além de avaliar o impacto do VaR para o ano seguinte. Nesse contexto, destaca-se o modelo autorregressivo com heterocedasticidade condicional (ARCH) capaz de detectar a volatilidade envolvida nas séries financeiras de retorno. Esse modelo tem-se mostrado mais eficiente, capaz de gerar informações relevantes aos investidores e ao mercado financeiro, com um esforço computacional moderado. / The most used methods for risk evaluation in the financial market usually depend strongly on the distribution assigned to the financial returns. When we assign a normal distribution, results tend to underestimate the Value at Risk (VaR), since the normal distribution usually has a lighter tail than those from the empirical distribution of financial time series. Many other distributions have been proposed in the literature, but we need to evaluate their computational effort for obtaining the value at risk when compared to the easiness of calculation of the normal distribution. In this work, we compare several models for calculating the value at risk, such as the normal, the empirical-quantile and the autoregressive (AR) models, evaluating their goodness-of-fit to the tail of the distribution of financial return time series and the impact of applying the calculated VaR to the following year. We also highlight the autoregressive conditional heteroskedasticity (ARCH) model due to its performance in detecting the volatility in the series. The ARCH model has proved to be efficient and able to generate relevant information to the investors and to the financial market with a moderate computational cost.
|
283 |
Axiomatic systemic risk measures forecastingMosmann, Gabriela January 2018 (has links)
Neste trabalho, aprofundamos o estudo sobre risco sistêmico via funções de agregação. Consideramos três carteiras diferentes como proxy para um sistema econômico, estas carteiras são consistidas por duas funções de agregação, baseadas em todos as ações do E.U.A, e um índice de mercado. As medidas de risco aplicadas são Value at Risk (VaR), Expected Shortfall (ES) and Expectile Value at Risk (EVaR), elas são previstas através do modelo GARCH clássico unido com nove funções de distribuição de probabilidade diferentes e mais por um método não paramétrico. As previsões são avaliadas por funções de perda e backtests de violação. Os resultados indicam que nossa abordagem pode gerar uma função de agregação adequada para processar o risco de um sistema previamente selecionado. / In this work, we deepen the study of systemic risk measurement via aggregation functions. We consider three different portfolios as a proxy for an economic system, these portfolios are consisted in two aggregation functions, based on all U.S. stocks and a market index. The risk measures applied are Value at Risk (VaR), Expected Shortfall (ES) and Expectile Value at Risk (EVaR), they are forecasted via the classical GARCH model along with nine distribution probability functions and also by a nonparametric approach. The forecasts are evaluated by loss functions and violation backtests. Results indicate that our approach can generate an adequate aggregation function to process the risk of a system previously selected.
|
284 |
Generation capacity expansion in restructured energy marketsNanduri, Vishnuteja 01 June 2009 (has links)
With a significant number of states in the U.S. and countries around the world trading electricity in restructured markets, a sizeable proportion of capacity expansion in the future will have to take place in market-based environments. However, since a majority of the literature on capacity expansion is focused on regulated market structures, there is a critical need for comprehensive capacity expansion models targeting restructured markets. In this research, we develop a two-level game-theoretic model, and a novel solution algorithm that incorporates risk due to volatilities in profit (via CVaR), to obtain multi-period, multi-player capacity expansion plans. To solve the matrix games that arise in the generation expansion planning (GEP) model, we first develop a novel value function approximation based reinforcement learning (RL) algorithm.
Currently there exist only mathematical programming based solution approaches for two player games and the N-player extensions in literature still have several unresolved computational issues. Therefore, there is a critical void in literature for finding solutions of N-player matrix games. The RL-based approach we develop in this research presents itself as a viable computational alternative. The solution approach for matrix games will also serve a much broader purpose of being able to solve a larger class of problems known as stochastic games. This RL-based algorithm is used in our two-tier game-theoretic approach for obtaining generation expansion strategies. Our unique contributions to the GEP literature include the explicit consideration of risk due to volatilities in profit and individual risk preference of generators. We also consider transmission constraints, multi-year planning horizon, and multiple generation technologies.
The applicability of the twotier model is demonstrated using a sample power network from PowerWorld software. A detailed analysis of the model is performed, which examines the results with respect to the nature of Nash equilibrium solutions obtained, nodal prices, factors affecting nodal prices, potential for market power, and variations in risk preferences of investors. Future research directions include the incorporation of comprehensive cap-and-trade and renewable portfolio standards components in the GEP model.
|
285 |
Efficient Simulations in FinanceSak, Halis January 2008 (has links) (PDF)
Measuring the risk of a credit portfolio is a challenge for financial institutions because of the regulations brought by the Basel Committee. In recent years lots of models and state-of-the-art methods, which utilize Monte Carlo simulation, were proposed to solve this problem. In most of the models factors are used to account for the correlations between obligors. We concentrate on the the normal copula model, which assumes multivariate normality of the factors. Computation of value at risk (VaR) and expected shortfall (ES) for realistic credit portfolio models is subtle, since, (i) there is dependency throughout the portfolio; (ii) an efficient method is required to compute tail loss probabilities and conditional expectations at multiple points simultaneously. This is why Monte Carlo simulation must be improved by variance reduction techniques such as importance sampling (IS). Thus a new method is developed for simulating tail loss probabilities and conditional expectations for a standard credit risk portfolio. The new method is an integration of IS with inner replications using geometric shortcut for dependent obligors in a normal copula framework. Numerical results show that the new method is better than naive simulation for computing tail loss probabilities and conditional expectations at a single x and VaR value. Finally, it is shown that compared to the standard t statistic a skewness-correction method of Peter Hall is a simple and more accurate alternative for constructing confidence intervals. (author´s abstract) / Series: Research Report Series / Department of Statistics and Mathematics
|
286 |
High frequency data aggregation and Value-at-Risk / Aukšto dažnio duomenų agregavimas ir vertės pokyčio rizikaPranckevičiūtė, Milda 20 September 2011 (has links)
Value-at-risk (VaR) model as a tool to estimate market risk is considered in the thesis. It is a statistical model defined as the maximum future loss due to likely changes in the value of financial assets portfolio during a certain period with a certain probability. A new definition of the aggregated VaR is given and the empirical study about different currencies position VaR estimates’ dependence on data aggregation functions (pointwise, maximum value, minimum value and average value) is provided. Functional ρ−GARCH(1,1) model is introduced and theorems of the stationary solution existence and maximum likelihood estimators of model parameters consistency are proved. Additionally, some examples of the model taking known density function of aggregated observations are given. Next, the general Hilbert space valued time series is presented and GARCH(1,1) model with univariate volatility is investigated. Theorems of the stationary solution existence, maximum likelihood estimators of model parameters consistency and asymptotic normality are proved; the analysis of residuals is provided. In the last chapter of the thesis the empirical study about Hurst index intraday value dependence on data aggregation taking different foreign currencies’ absolute returns is presented. / Disertacijoje nagrinėjamas vertės pokyčio rizikos modelis. Tai toks statistinis modelis, kurį taikant su tam tikra tikimybe įvertinamas didžiausias galimas nustatyto laikotarpio nuostolis, kredito įstaigos patiriamas dėl neigiamų taikomos finansinės priemonės vertės pokyčių. Apibrėžiamas agreguotų duomenų vertės pokyčio rizikos modelis ir pateikiamas praktinis tyrimas apie valiutų pozicijos vertės pokyčio rizikos modelio įvertinių priklausomybę nuo duomenų agregavimo taisyklės (pataškio, didžiausios vertės, mažiausios vertės ir vidutinės vertės). Kitame disertacijos skyriuje pristatomas naujas funkcinis ρ−GARCH(1,1) modelis, įrodomos stacionaraus sprendinio egzistavimo ir didžiausio tikėtinumo metodu įvertintų parametrų suderinamumo teoremos. Taip pat pateikiama keletas apibrėžtojo modelio pavyzdžių, kai žinoma agreguotų grąžų tankio funkcija. Disertacijoje apibrėžiamas Hilberto erdvės GARCH(1,1) modelis su vienmačiu kintamumu. Nagrinėjamos modelio savybės ir įrodomos stacionaraus sprendinio egzistavimo, didžiausio tikėtinumo metodu vertinamų parametrų suderinamumo ir asimptotinio normalumo teoremos, atliekama liekanų analizė. Paskutiniame disertacijos skyriuje aprašomas atliktas empirinis tyrimas apie Hursto indekso, kaip ilgos atminties parametro, priklausomybę nuo agregavimo taisyklės dienos metu, pasitelkiant absoliučias valiutų kursų grąžas.
|
287 |
Aukšto dažnio duomenų agregavimas ir vertės pokyčio rizika / High frequency data aggregation and Value-at-RiskPranckevičiūtė, Milda 20 September 2011 (has links)
Disertacijoje nagrinėjamas vertės pokyčio rizikos modelis. Tai toks statistinis modelis, kurį taikant su tam tikra tikimybe įvertinamas didžiausias galimas nustatyto laikotarpio nuostolis, kredito įstaigos patiriamas dėl neigiamų taikomos finansinės priemonės vertės pokyčių. Apibrėžiamas agreguotų duomenų vertės pokyčio rizikos modelis ir pateikiamas praktinis tyrimas apie valiutų pozicijos vertės pokyčio rizikos modelio įvertinių priklausomybę nuo duomenų agregavimo taisyklės (pataškio, didžiausios vertės, mažiausios vertės ir vidutinės vertės). Kitame disertacijos skyriuje pristatomas naujas funkcinis ρ−GARCH(1,1) modelis, įrodomos stacionaraus sprendinio egzistavimo ir didžiausio tikėtinumo metodu įvertintų parametrų suderinamumo teoremos. Taip pat pateikiama keletas apibrėžtojo modelio pavyzdžių, kai žinoma agreguotų grąžų tankio funkcija. Disertacijoje apibrėžiamas Hilberto erdvės GARCH(1,1) modelis su vienmačiu kintamumu. Nagrinėjamos modelio savybės ir įrodomos stacionaraus sprendinio egzistavimo, didžiausio tikėtinumo metodu vertinamų parametrų suderinamumo ir asimptotinio normalumo teoremos, atliekama liekanų analizė. Paskutiniame disertacijos skyriuje aprašomas atliktas empirinis tyrimas apie Hursto indekso, kaip ilgos atminties parametro, priklausomybę nuo agregavimo taisyklės dienos metu, pasitelkiant absoliučias valiutų kursų grąžas. / Value-at-risk (VaR) model as a tool to estimate market risk is considered in the thesis. It is a statistical model defined as the maximum future loss due to likely changes in the value of financial assets portfolio during a certain period with a certain probability. A new definition of the aggregated VaR is given and the empirical study about different currencies position VaR estimates’ dependence on data aggregation functions (pointwise, maximum value, minimum value and average value) is provided. Functional ρ−GARCH(1,1) model is introduced and theorems of the stationary solution existence and maximum likelihood estimators of model parameters consistency are proved. Additionally, some examples of the model taking known density function of aggregated observations are given. Next, the general Hilbert space valued time series is presented and GARCH(1,1) model with univariate volatility is investigated. Theorems of the stationary solution existence, maximum likelihood estimators of model parameters consistency and asymptotic normality are proved; the analysis of residuals is provided. In the last chapter of the thesis the empirical study about Hurst index intraday value dependence on data aggregation taking different foreign currencies’ absolute returns is presented.
|
288 |
Coherent And Convex Measures Of RiskYildirim, Irem 01 September 2005 (has links) (PDF)
One of the financial risks an agent has to deal with is market risk. Market risk is caused by the uncertainty attached to asset values. There exit various measures trying to model market risk. The most widely accepted one is Value-at-
Risk. However Value-at-Risk does not encourage portfolio diversification in general, whereas a consistent risk measure has to do so. In this work, risk measures satisfying these consistency conditions are examined within theoretical
basis. Different types of coherent and convex risk measures are investigated. Moreover the extension of coherent risk measures to multiperiod settings is discussed.
|
289 |
極值理論與整合風險衡量黃御綸 Unknown Date (has links)
自從90年代以來,許多機構因為金融商品的操縱不當或是金融風暴的衝擊數度造成全球金融市場的動盪,使得風險管理的重要性與日俱增,而量化風險模型的準確性也益受重視,基於財務資料的相關性質如異質變異、厚尾現象等,本文主要結合AR(1)-GARCH(1,1)模型、極值理論、copula函數三種模型應用在風險值的估算,且將報酬分配的假設區分為三類,一是無母數模型的歷史模擬法,二是基於常態分配假設下考量隨機波動度的有母數模型,三是利用歷史資料配適尾端分配的極值理論法來對聯電、鴻海、國泰金、中鋼四檔個股和台幣兌美元、日圓兌美元、英鎊兌美元三種外匯資料作一日風險值、十日風險值、組合風險值的測試。
實證結果發現,在一日風險值方面,95%信賴水準下以動態風險值方法表現相對較好,99%信賴水準下動態極值理論法和動態歷史模擬法皆有不錯的估計效果;就十日風險值而言,因為未來十日資產的報酬可能受到特定事件影響,所以估計上較為困難,整體看來在99%信賴水準下以條件GPD+蒙地卡羅模擬的表現相對較理想;以組合風險值來說, copula、Clayton copula+GPD marginals模擬股票或外匯組合的聯合分配不論在95%或99%信賴水準下對其風險值的估計都獲得最好的結果;雖然台灣個股股價受到上下漲跌幅7%的限制,台幣兌美元的匯率也受到央行的干涉,但以極值理論來描述資產尾端的分配情形相較於假設其他兩種分配仍有較好的估計效果。
|
290 |
Delegated investing and optimal risk budgets /Starck, Markus O. January 2008 (has links)
University, Diss.--Mainz, 2007.
|
Page generated in 0.0841 seconds