• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 24
  • 10
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 101
  • 30
  • 23
  • 21
  • 20
  • 20
  • 17
  • 16
  • 15
  • 13
  • 13
  • 12
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Aerodynamic Investigation of Leading Edge Contouring and External Cooling on a Transonic Turbine Vane

Saha, Ranjan January 2014 (has links)
Efficiency improvement in turbomachines is an important aspect in reducing the use of fossil-based fuel and thereby reducing carbon dioxide emissions in order to achieve a sustainable future. Gas turbines are mainly fossil-based turbomachines powering aviation and land-based power plants. In line with the present situation and the vision for the future, gas turbine engines will retain their central importance in coming decades. Though the world has made significant advancements in gas turbine technology development over past few decades, there are yet many design features remaining unexplored or worth further improvement. These features might have a great potential to increase efficiency. The high pressure turbine (HPT) stage is one of the most important elements of the engine where the increased efficiency has a significant influence on the overall efficiency as downstream losses are substantially affected by the prehistory. The overall objective of the thesis is to contribute to the development of gas turbine efficiency improvements in relation to the HPT stage.   Hence, this study has been incorporated into a research project that investigates leading edge contouring near endwall by fillet and external cooling on a nozzle guide vane with a common goal to contribute to the development of the HPT stage. In the search for HPT stage efficiency gains, leading edge contouring near the endwall is one of the methods found in the published literature that showed a potential to increase the efficiency by decreasing the amount of secondary losses. However, more attention is necessary regarding the realistic use of the leading edge fillet. On the other hand, external cooling has a significant influence on the HPT stage efficiency and more attention is needed regarding the aerodynamic implication of the external cooling. Therefore, the aerodynamic influence of a leading edge fillet and external cooling, here film cooling at profile and endwall as well as TE cooling, on losses and flow field have been investigated in the present work. The keystone of this research project has been an experimental investigation of a modern nozzle guide vane using a transonic annular sector cascade. Detailed investigations of the annular sector cascade have been presented using a geometric replica of a three dimensional gas turbine nozzle guide vane. Results from this investigation have led to a number of new important findings and also confirmed some conclusions established in previous investigations to enhance the understanding of complex turbine flows and associated losses.   The experimental investigations of the leading edge contouring by fillet indicate a unique outcome which is that the leading edge fillet has no significant effect on the flow and secondary losses of the investigated nozzle guide vane. The reason why the leading edge fillet does not affect the losses is due to the use of a three-dimensional vane with an existing typical fillet over the full hub and tip profile. Findings also reveal that the complex secondary flow depends heavily on the incoming boundary layer. The investigation of the external cooling indicates that a coolant discharge leads to an increase of profile losses compared to the uncooled case. Discharges on the profile suction side and through the trailing edge slot are most prone to the increase in profile losses. Results also reveal that individual film cooling rows have a weak mutual effect. A superposition principle of these influences is followed in the midspan region. An important finding is that the discharge through the trailing edge leads to an increase in the exit flow angle in line with an increase of losses and a mixture mass flow. Results also indicate that secondary losses can be reduced by the influence of the coolant discharge. In general, the exit flow angle increases considerably in the secondary flow zone compared to the midspan zone in all cases. Regarding the cooling influence, the distinct change in exit flow angle in the area of secondary flows is not noticeable at any cooling configuration compared to the uncooled case. This interesting zone requires an additional, accurate study. The investigation of a cooled vane, using a tracer gas carbon dioxide (CO2), reveals that the upstream platform film coolant is concentrated along the suction surfaces and does not reach the pressure side of the hub surface, leaving it less protected from the hot gas. This indicates a strong interaction of the secondary flow and cooling showing that the influence of the secondary flow cannot be easily influenced.   The overall outcome enhances the understanding of complex turbine flows, loss behaviour of cooled blade, secondary flow and interaction of cooling and secondary flow and provides recommendations to the turbine designers regarding the leading edge contouring and external cooling. Additionally, this study has provided to a number of new significant results and a vast amount of data, especially on profile and secondary losses and exit flow angles, which are believed to be helpful for the gas turbine community and for the validation of analytical and numerical calculations. / Ökad verkningsgrad i turbomaskiner är en viktig del i strävan att minska användningen av fossila bränslen och därmed minska växthuseffekten för att uppnå en hållbar framtid. Gasturbinen är huvudsakligen fossilbränslebaserad, och driver luftfart samt landbaserad kraftproduktion. Enligt rådande läge och framtidsutsikter bibehåller gasturbinen denna centrala roll under kommande decennier. Trots betydande framsteg inom gasturbinteknik under de senaste årtionden finns fortfarande många designaspekter kvar att utforska och vidareutveckla. Dessa designaspekter kan ha stor potential till ökad verkningsgrad. Högtrycksturbinsteget är en av de viktigaste delarna av gasturbinen, där verkningsgraden har betydande inverkan på den totala verkningsgraden eftersom förluster kraftigt påverkas av tidigare förlopp. Huvudsyftet med denna studie är att bidra till verkningsgradsförbättringar i högtrycksturbinsteget.   Studien är del i ett forskningsprojekt som undersöker ledskenans framkantskontur vid ändväggarna samt extern kylning, i jakten på dessa förbättringar. Den aerodynamiska inverkan av en förändrad geometri vid ledskenans ändväggar har i tidigare studier visat potential för ökad verkningsgrad genom minskade sekundärförluster. Ytterligare fokus krävs dock, med användning av en rimlig hålkälsradie. Samtidigt har extern kylning i form av filmkylning stor inverkan på verkningsgraden hos högtrycksturbinsteget och forskning behövs med fokus på den aerodynamiska inverkan. Av denna anledning studeras här inverkan både av ändrad hålkälsradie vid ledskenans framkant samt extern kylning i form av filmkylning av skovel, ändvägg och bakkant på aerodynamiska förluster och strömningsfält. Huvudpelaren i detta forskningsprojekt har varit en experimentell undersökning av en geometrisk replika av en modern tredimensionell gasturbinstator i en transonisk annulärkaskad. Detaljerade undersökningar i annulärkaskaden har gett betydande resultat, och bekräftat vissa tidigare studier. Detta har lett till ökad förståelsen för de komplexa flöden och förluster som karakteriserar gasturbiner.   De experimentella undersökningarna av förändrad framkantsgeometri leder till den unika slutsatsen att den modifierade hålkälsradien inte har någon betydande inverkan på strömningsfältet eller sekundärförluster av den undersökta ledskenan. Anledningen till att förändringen inte påverkar förlusterna är i detta fall den tredimensionella karaktären hos ledskenan med en redan existerande typisk framkantsgeometri. Undersökningarna visar också att de komplexa sekundärströmningarna är kraftigt beroende av det inkommande gränsskiktet. Undersökning av extern kylning visar att kylflödet leder till en ökad profilförlust. Kylflöde på sugsidan samt bakkanten har störst inverkan på profilförlusten. Resultaten visar också att individuella filmkylningsrader har liten påverkan sinsemellan och kan behandlas genom en superpositionsprincip längs mittsnittet. En viktig slutsats är att kylflöde vid bakkanten leder till ökad utloppsvinkel tillsammans med ökade förluster och massflöde. Resultat tuder på att sekundärströmning kan minskas genom ökad kylning. Generellt ökar utloppsvinkeln markant i den sekundära flödeszonen jämfört med mittsnittet för alla undersökta fall. Den kraftiga förändringen i utloppsvinkel är dock inte märkbar i den sekundära flödeszonen i något av kylfallen jämfört med de okylda referensfallet. Denna zon fordrar ytterligare studier. Spårgasundersökning av ledskenan med koldioxid (CO2) visar att plattformskylning uppströms ledskenan koncentreras till skovelns sugsida, och når inte trycksidan som därmed lämnas mer utsatt för het gas. Detta påvisar den kraftiga interaktionen mellan sekundärströmning och kylflöden, och att inverkan från sekundärströmningen ej enkelt kan påverkas. De generella resultaten från undersökningen ökar förståelsen av komplexa turbinflöden, förlustbeteenden för kylda ledskenor, interaktionen mellan sekundärströmning och kylflöden, och ger rekommendationer för turbinkonstruktörer kring förändrad framkantsgeometri i kombination med extern kylning. Dessutom har studien gett betydande resultat och en stor mängd data, särskilt rörande profil- och sekundärförluster och utloppsvinkel, vilket tros kunna vara till stor hjälp för gasturbinssamfundet vid validering av analytiska och numeriska beräkningar. / <p>QC 20140909</p> / Turbopower, Sector rig
62

Overal Performance Prediction Of Turbo Rotary Compound (turc) Engine Using Simulation Results Of Engine Components

Karaca, Mehmet 01 August 2005 (has links) (PDF)
The thesis proposes an overall performance estimation procedure for a new turbo-rotary compound engine (TURC) and an associated novel thermodynamic cycle. In this engine, two or multiple spools are lined up in series within the engine. In the front spool, positive displacement rotary vane type turbines drive axial compressor the performance of which were estimated using stage stacking calculations. In the back spool, axial turbine stages drive positive displacement rotary vane type compressors, the performance of axial turbine was predicted by series matching of turbine stages. Two air streams feed separately the customary turbo components and the rotary vane components, respectively. Accordingly, the primary high mass flow through the axial compressors and turbines undergoes Bryton cycle, where as the secondary, low mass flow through the positive displacement rotary components is mainly undergoes Akmandor cycle, which is a novel thermodynamic cycle. The energy consumed internally by the engine is minimized because less input shaft power is needed for the rotary vane compressors and higher inlet temperatures and less cooling can be tolerated by the intermittent combustion rotary vane turbines. The result is a radical improvement in both efficiency and net power output. But this result can be estimated, since the novel engine is the combination of a high efficiency internal combustion engine and high performance gas turbine engine. Aerothermodynamics and spool matching calculations comparing a T56-A14 core with a TURC of similar size and compression ratio show that the new engine provides superior performance characteristics by increasing the net output work by 100% and decreasing the specific fuel consumption by 20%.
63

Estudo das características de dispersão de suspensões de carbonato de cálcio. / Study of dispersion characteristics of calcium carbonate suspensions.

Gabriela Araujo Valencia 12 April 2017 (has links)
O presente trabalho tem como proposição investigar a hipótese de que a diminuição da tensão superficial do líquido favorece o comportamento reológico de suspensões concentradas, uma vez que as partículas estão mais próximas e a contribuição da força de capilaridade possivelmente aumenta. Como suspensões concentradas tendem ao comportamento viscoelástico, investigou-se métodos reológicos propícios para analisar possíveis consequências devido à alteração da tensão superficial da água. Foram utilizados dois carbonatos de cálcio equivalentes (P1 e P5) que se diferenciam pela distribuição granulométrica. Utilizou-se dois dispersantes de mercado e etilenoglicol como modificadores de tensão superficial. A análise de superfície pelo ensaio de potencial zeta, revelou carga superficial positiva. Embora os pós sejam equivalentes, a mobilidade eletroforética do P5 é menor. Verificou-se que o íon cálcio é determinante do potencial. Verificou-se contribuição eletrostática apenas dos dispersantes. O ensaio de gota pendente constatou diminuição da tensão superficial da água com os três aditivos. Ensaios de ascensão capilar pelo método de Washburn revelaram maiores ângulos de contato para ensaios com aditivos, sendo menor para P5. Avaliou-se geometrias e métodos reológicos a fim de selecionar bom conjunto para medidas de viscoelasticidade, sendo oscilatório de tensão e geometria vane escolhidos. O acréscimo dos dispersantes resultou em menores valores de G\' e tensões de escoamento, enquanto o etilenoglicol resultou em maiores. Não há relação clara entre valores calculados de ângulo de contato e mobilidade eletroforética. Os ensaio reológicos e de mobilidade relacionaram-se apenas para os dispersantes. A hipótese foi verificada pelos valores de tensão de escoamento e IPS. Para os dispersantes, foi possível observar comportamento próximo à hipótese, quanto menor foi a tensão superficial do líquido, menores valores de tensão para menores IPS. Explorou-se também a hipótese pelos ensaios de ângulo de contato, observou-se novamente curva próxima a hipótese. Embora necessidade de mais ensaios, o presente trabalho contribuiu para metodologia de exploração de características de superfície, dispersão e reológicas de suspensões concentradas. / The proposition of the present work is to investigate the hypothesis that the reduction of the surface tension of the liquid favors the rheological behavior of concentrated suspensions, since the particles are closer and the contribution of capillarity forces possibly increases. As concentrated suspensions tend to viscoelastic behavior, rheological methods were examined to analyze possible consequences due to changes of surface tension of the water. Two equivalent calcium carbonates (P1 and P5) were used and differ by particle-size distribution. Two market dispersants and ethylene glycol were used as surfactant. Surface analysis by the zeta potential test revealed positive surface charge and, although the powders are equivalent, the electrophoretic mobility of P5 is lower. The reults show that calcium is potential determining ion. Electrostatic contribution was found only for the dispersants. Pendant drop test showed a decrease in the surface tension of the water with the three additives. Washburn capillary rise technique estimated greater contact angles for tests with additives and lower ones for P5. Rheological geometries and methods were evaluated in order to select good set for viscoelasticity measurements, choosing oscillatory stress sweep and vane geometry. The addition of the dispersants resulted in lower values G \'and yield stress, while ethylene glycol resulted in higher values. There is no clear relation between contact angle and electrophoretic mobility. The rheological and eletrophoretic mobility showed relation only for dispersants. The hypothesis was verified by the values yield stress and IPS. For the dispersants, it was possible to observe behavior close to the hypothesis, the lower the surface tension of the liquid, the lower the yield stress for lower IPS. The hypothesis was also explored by the contact angle tests, a curve next to the hypothesis was observed again. Although the need for more tests, the present work contributed to the methodology of exploration of surface characteristics, dispersion and rheological characteristics of concentrated suspensions.
64

Modelagem e simulação da dinâmica de uma bomba de palhetas auto-compensada por pressão do tipo controle integral / Modeling and simulation of the dynamic behavior of vanetype pressure compensated hydraulic pumps with integral-type control

Marcela Fabiana Machado Ferreira 05 December 2008 (has links)
Apesar dos sistemas hidráulicos estarem entre os mais antigos meios de transmissão de energia usados pelo homem, atualmente vem recebendo muita atenção nas pesquisas científicas. A busca por maios controle da energia gerada impulsionou um aumento da utilização e aplicação e novas investigações tecnológicas de tais sistemas. Além da alta capacidade de controle e precisão, a sensibilidade, rigidez, força e potência conferem aos sistemas hidráulicos um conjunto completo de propriedades, permitindo sua ampla aplicação nos mais diferentes ramos. Porém a não linearidade da dinâmica de suas partes faz a modelagem dos sistemas hidráulicos ser complexa. Sabendo que a bomba é a parte mais importante do circuito hidráulico, este estudo apresenta um modelo matemático e a simulação computacional de uma bomba de palhetas auto-compensada por pressão com controle tipo integral. O modelo teórico está baseado na aplicação leis da física em quatro partes das bomba: Lei de Newton no carretel de válvulas e no conjunto dos pistões e o anel, e, Lei da Conservação da Massa nos volume de controle sob a pressão de operação Po e no volume sob a pressão interna da carcaça (pressão no servo cilindro), Pcc. O comportamento do sistema foi verificado com a aplicação de uma carga hidráulica proporcionada por um orifício com abertura instantânea (entrada tipo degrau). Dessa maneira a pressão de operação, saída do sistema, apresenta um pequeno transiente no início da simulação e rapidamente entra em regime. No momento no qual a carga hidráulica atua o transiente volta e em seguida entra em regime com o mesmo valor que apresentava antes da entrada degrau, comportamento específico de sistemas com controle tipo PI, proporcional e integral. / Despite the hydraulic systems are among the oldest means of energy transmission used by man, currently they are receiving special attention in scientific researchs. The search for greater control of energy generated spurred an increase in the use and application of technology and new research such systems. Besides high capacity of control and precision, sensitivity, stiffness, speed, strength, power hydraulic systems give a complete set of properties allowing their wide applications in many different areas. But the non-linearity of the dynamics of its parts is the modeling of hydraulic system is complex. Knowing that pumb is the most important part of the hydraulic circuits, this study presents a mathematical model and computer stimulation of a vane-type pump offset by pressure with integral control type. The theoretical model is based on the application laws of physics in four parts of the pumb: Newton\'s law of the spool valves and the coupling of the piston ring and with the Law of Conservation of Mass in volumes of controlling the pressure, and the Po inside if the carcass (pressure in the slave cylinder), Pcc. The behavior of the system was checked with the application of a hydraulic load (request) type entry step. Thus the pressure, leaving the system, presents a transient at the beginning of the simulation and quickly enter into arrangements. At the moment in which the hydraulic load transient operates the back and then enter into arrangements with the same value as presented before the step, specific behavior of systems with full control type.
65

Řešení technologie pro součást "hřídel parní turbíny" s optimalizací tvarově složité plochy / Solution technology of production "hřídel parní turbíny"-part with effective usage of contoured surface

Vacenovský, Igor January 2008 (has links)
The aim of this work is to suggest the solution for the new technology of rotor grooves machining for vanes of the steam turbine. It contains the technology of rotor grooves machining. Various criteria are taken into account and the final solution is adapted to the conditions of EKOL, spol. s r.o. company. Technical and economical evaluation.
66

Experimental loss measurements in an annular sector cascade at supersonic exit velocities

Lilienberg, László January 2016 (has links)
Efficiency improvement is one of the most important aspects of engineering and especially important in the field of energy production. In the past decades, energy was mostly produced by fossil based technologies involving turbomachines, and the efficiency of these machines nearly quadrupled since the introduction of the first economically viable gas turbines. The progress continues, as there are still areas where improvement can be made. Such area is the High Pressure Turbine stage (HPT), which influences the flow characteristics and losses downstream, which this thesis will examine in more detail. In the open literature it can be found that one of the areas with potential for progress is the external cooling of the nozzle guide vanes (NGV) of the HPT stage. However not many studies go towards supersonic exit velocities even though that is the most common trend followed by the industry these days. The external cooling allows the turbine entry temperature (TET) to go beyond the melting point of the blade material thus increase Carnot efficiency but in the meantime influences the flow characteristics and losses. To understand these influences of the cooling, experiments in an annular sector cascade (ASC) were conducted with exit velocities from Mach 0.95 to 1.2 without and with cooling applied. The findings of the experiments are believed to help the more detailed understanding of the flow behaviour at high exit velocities. When comparing the corresponding runs in the two cases it became obvious that with cooling applied the deviation of the exit flow angle is generally smaller than in the uncooled case. This might be a highly important design feature for designers to work with. From the available data it was concluded that the total pressure distribution across the span is not significantly affected with the introduction of cooling.
67

Aerodynamic Loss Co-Relations and Flow- Field Investigations of a Transonic Film- Cooled Nozzle Guide Vane

Leung, Pak Wing January 2015 (has links)
Over the last two decades, most developed countries have reached a consensus that greener energy production is necessary for the world, due to the climate changes and limited fossil fuel resources. More efficient turbine is desirable and can be archived by higher turbine-inlet temperature (TIT). However, it is difficult for nozzle guide vane (NGV), which is the first stage after combustion chamber, to withstand a very high temperature. Thus, cooling methods such as film cooling have to be implemented. Film-cooled NGV of an annular sector cascade (ASC) is studied in this thesis, for getting comprehensive calculation of vorticity, and analyzing applicability of existing loss models, namely Hartsel model and Young &amp; Wilcock model. The flow-field calculation methods from previously published studies are reviewed. Literatures focusing on Hartsel model and Young &amp; Wilcock model are studied. Measurement data from previously published studies are analyzed and compared with the loss models. In order to get experience of how measurements take place, participation of a test run experiment is involved. Calculation of flow vector has been evaluated and modified. Actual flow angle is introduced when calculating velocity components. Thus, more exact results are obtained from the new method. Calculation of vorticity has been evaluated and made more comprehensive. Vorticity components as well as magnitude of total streamwise vorticity are calculated and visualized. Vorticity is higher and more extensive for fully cooled case than uncooled case. Highest vorticity is found at regions near the hub, tip and TE. Axial and circumferential vorticities show similar patterns, while the radial vorticity is relatively simpler. Compressibility is introduced as a new method when calculating circumferential and radial vorticities, resulting more extensive and higher vorticities than results from incompressible solutions. Hartsel model and Young &amp; Wilcock model have been evaluated and compared to the ASC to see the applicability of the models. In general, Hartsel model cannot agree with the ASC to a satisfactory level and thus cannot be applied. Coolant velocity is found to be the dominant factor of Hartsel model. Young &amp; Wilcock model may match SS1 and SS2 cases, or even PS and SH4 cases, but cannot match TE case. The applicability of Young &amp; Wilcock model is much dependent on the location of cooling rows.
68

Environmentally Friendly and Sustainable Stream Stability in the Vicinity of Bridges

Cope, Evan David 12 March 2014 (has links) (PDF)
This report was sponsored by the Utah Department of Transportation (UDOT) to determine if stream restoration structures could be used as scour countermeasures near state highways and bridges. Scour countermeasures that are effective in preventing erosion exist but that are not so friendly for aquatic organisms. UDOT is interested in finding a countermeasure that is both effective in preventing erosion while not harming aquatic organisms. Stream restoration structures are friendly for aquatic organisms but are prone to failure when flows exceed the design levels. David Rosgen has developed restoration structures that are friendly for aquatic organisms and that have provided streambank protection. These structures are the J-Hook vane, Cross-Vane and W-Weir. Based research done in this report, Cross-Vanes and W-Weirs are best suited to protect bridges because they will protect both sides of a stream bank. For these restoration structures to be reliable at higher flows and shear stresses experienced at bridges, they must follow the design criteria specified in this report. One of the most important design requirements is that the structures designed by David Rosgen have an attached floodplain where the structure meets the streambank. The floodplain disperses the energy of the flow, reducing shear stress. In the vicinity of some bridges, a floodplain cannot be implemented. In such cases, culverts can be installed at the floodplain level, that pass under the bridge to help reduce shear stresses, mimicking a floodplain. Cross-Vanes and W-Weirs can be used to protect bridges and other infrastructure. Based on modeling and comparing restoration structures to a labyrinth weir, they still have an impact on higher flows. At higher than design flows, such as experienced at bridges, the structures help to reduce shear stresses. To further investigate their use as a scour countermeasure near bridges, it is recommended that a structure be installed near a bridge following this report's design criteria. This will be determined depending on available funding.
69

An Experimental Investigation of Varied IGV Stagger Angle Effects on a High-Pressure Compressor

Amanda Beach (15183997) 05 April 2023 (has links)
<p>  </p> <p>The focus of this work was to characterize the overall performance effects due to altering the stagger angle of a variable inlet guide vane (VIGV) on a multistage axial compressor. Data were collected from the Purdue three-stage axial compressor (P3S). The stagger angle from the VIGV was varied thrice from the baseline configuration in increments of 5 degrees resulting in four configurations with angles of 4 deg, 9 deg, 14 deg, and 19, where the baseline configuration was 9 degrees. </p> <p>Compressor performance data were collected and analyzed for each stagger angle configuration along three corrected speeds (68%, 80%, 100%). Each speedline consisted of approximately six loading conditions for which the corrected mass flow rate was matched for each configuration to allow for a basis of comparison among the configurations. Stalling mass flow rates and stall inception were also investigated. Total pressure and total temperature rakes were installed throughout the compressor to investigate the performance at interstage locations for each loading condition. In addition to the rakes, static pressure taps were distributed along the compressor and unsteady pressure measurements were distributed circumferentially. Capacitance probes were installed over each of the three rotors to evaluate rotor tip clearance measurements during the tests. The effects of the stagger angle on the stability margin of the compressor were also characterized. Each speedline presented, thus, includes a representative stall point in addition to the six loading conditions where detailed flow field traverses were conducted. </p> <p>The results of this investigation showed that while the total pressure ratio (TPR) increased as the stagger angle decreased, the stability margin was reduced. The opposite trend was observed with a decrease in overall TPR across the compressor and an increase in stability margin for increased stagger angles. Based on findings from previous authors, this trend was anticipated. A similar metric for monitoring compressor performance is isentropic efficiency. This investigation utilized both temperature-based and torque-based isentropic efficiency. The greatest effect of the VIGV stagger angle on compressor isentropic efficiency occurred at the lowest loading conditions, and there was no discernible impact on isentropic efficiency at high loading conditions for this case. As VIGVs typically have the greatest impact on off-design conditions, this trend was expected. The varied stagger angle configurations had no discernible effect on the type of stall inception mechanism experienced by the compressor. The primary effect on stall that was consistent across the configurations was a noticeable increase in the duration and strength of modal oscillations present throughout the compressor with increased stagger angles, indicating an increase in stability. </p> <p>The data collected and presented herein provide a unique, robust dataset to improve understanding of the effects of changing stagger angles on variable inlet guide vanes on multistage axial compressors. These data correspondingly provide a unique training set and validation method for predictive technology. </p>
70

Gestaltung von Radialspalt- und Seitenwandgeometrien an verstellbaren Axialverdichterstatoren

Gottschall, Marcel 08 August 2023 (has links)
Wirkungsgradsteigerungen moderner Turbomaschinen machen dort auch zukünftig verstellbare Leitschaufeln unverzichtbar. Infolge komplexer Ringraumgeometrie entstehen bei der Schaufelverstellung betriebspunktabhängige Radialspalte, welche hinsichtlich Effizienzoptimierungen eine zunehmende Rolle spielen. Die vorliegende Arbeit charakterisiert die aerodynamischen Mechanismen und das Potential von spezifischen radialen Teilspalt- und Seitenwandkonturgeometrien solcher Verstellstatoren. Anders als bei durchgehenden radialen Spalten variiert der Einfluss der Teilspalte abhängig von deren axialer Position. Ein Teilspalt im hinteren Schaufelsehnenbereich erreicht reduzierte Totaldruckverluste gegenüber einer spaltfreien Referenz- beschaufelung. Dieser Vorteil vergrößert sich mit steigender Gitterbelastung und erhöht sich nochmals im Vergleich mit Konfigurationen eines vorderen Teilspaltes. Die Ergebnisse zei- gen, dass die Position entlang der Sehne der wesentliche Ein- flussfaktor auf die Radialspaltcharakteristik ist, die Spaltlänge als auch deren radiale Variation spielen nur eine untergeordnete, quantitative Rolle. Auch die untersuchten modellhaften Seitenwandkonturen wirken sich aufgrund sekundärer geome- trischer Einflüsse positiv auf Verlust und Gitterumlenkung in der Abströmung aus. Reduzierte Abmessungen der Teilspalte schwächen auch charakteristische Periodizitäten in Verbindung mit Spaltströmung bzw. resultierendem Spaltwirbel ab. Diese Erkenntnisse erlauben aerodynamische Optimierungen der Geometrie eines spezifischen Statordesigns. Ebenso ergibt sich ein Anwendungspotential im Randbereich starrer Leitschaufeln.

Page generated in 0.0873 seconds