• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 24
  • 10
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 101
  • 30
  • 23
  • 21
  • 20
  • 20
  • 17
  • 16
  • 15
  • 13
  • 13
  • 12
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Unsteady Aerodynamic Interaction in a Closely-Coupled Turbine Consistent with Contra-Rotation

Ooten, Michael Kenneth 26 August 2014 (has links)
No description available.
72

Nozzle Guide Vane Sweeping Jet Impingement Cooling

Agricola, Lucas 12 October 2018 (has links)
No description available.
73

Innovative Forced Response Analysis Method Applied to a Transonic Compressor

Hutton, Timothy M. January 2003 (has links)
No description available.
74

The Effect of Film Cooling on Nozzle Guide Vane Ash Deposition

Bonilla, Carlos Humberto 18 December 2012 (has links)
No description available.
75

The Effects of Upstream Boundary Layers on the NGV Endwall Cooling

Mao, Shuo 03 June 2022 (has links)
Modern gas turbine designs' ever-increasing turbine inlet temperature raises challenges for the nozzle guide vane cooling. Two typical endwall cooling schemes, jump cooling and louver cooling, result in different interactions between the injected coolant and the mainstream, leading to different cooling effects. This study investigates these two cooling schemes on the endwall cooling experimentally and numerically. Wind tunnel tests and the CFD simulations are carried out with engine-representative conditions of an exit Mach number of 0.85, an exit Reynolds number of 1.5×10^6, and an inlet Turbulence intensity of 16%. The jump cooling scheme experiments investigate two blowing ratios, 2.5 and 3.5, two density ratios, 1.2 and 1.95, and three endwall profiles with different NGV-turbine alignments. Four coolant mass flow ratios from 1.0% to 4.0% are tested for the louver cooling. The results show that the cavity vortex, the horseshoe vortex, and the passage vortex are the main factors that prevent the upstream coolant from reaching the NGV passage. The jump cooling scheme generally provides high momentum to the cooling jets. As a result, the coolant at the design case density ratio of 1.95 and blowing ratio of 2.5 is sufficiently energized to penetrate the horseshoe vortex. It then forms a relatively uniform coolant film near the NGV passage inlet, leading to a minimum adiabatic cooling effectiveness of 0.4 throughout the passage. Reducing the coolant density or increasing the blowing ratio leads to higher coolant momentum, so the coolant jets can further suppress the horseshoe vortex. However, high momentum may cause coolant lift-off, mitigating the coolant reattachment. Therefore, the density ratio needs to be carefully balanced with the blowing ratio to optimize the cooling effect. This balance is also affected by the combustor-NGV misalignment, as a higher step height requires higher coolant momentum to overcome the step-induced vortices. On the contrary, the louver cooling scheme provides less momentum to the coolant. The results showed that only by exceeding a coolant mass flow rate of 1~2% can the coolant form a uniform film which provides good coverage upstream of the NGV passage inlet. As for the cooling of the NGV passage, the mass flow rate ratio of the range investigated is not sufficient for desirable cooling performance. The pressure side endwall proves most difficult for the coolant to reach. In addition, the fishmouth cavity at the combustor-NGV passage causes a three-dimensional cavity vortex that transports the coolant in the pitch-wise direction. Moreover, the coolant transport pattern is dependent on the coolant blow rate. Overall, the more-energized coolant film generated by the jump cooling tends to survive longer, but it is also more prone to lift-off. At the same time, the less-energized coolant film caused by the louver cooling is more susceptible to vortices and the discontinuity of the endwall geometry. However, it develops faster, especially in the lateral direction. The two schemes could be applied simultaneously for an ideal cooling system. The jump cooling can provide enough momentum for the coolant to persist in the NGV passage. Meanwhile, the louver cooling covers the upstream region before the jump cooling coolant reattaches to the endwall. / Doctor of Philosophy / Gas turbines, sometimes called combustion turbines, are widely used to generate power or propulsion for various applications. The three main components of a gas turbine are compressor, combustor, and turbine. Modern gas turbines run at a high turbine inlet temperature that exceeds the current metal limits to increase efficiency. However, this brings significant challenges to the cooling of the first stage of the turbine, the nozzle guide vane. In this research, two commonly used endwall cooling methods, jump cooling and louver cooling, are investigated under engine-representative conditions experimentally and numerically. In addition, flow physics is demonstrated to explain the endwall cooling performance, mainly the upstream boundary layer caused by the interaction between the mainstream and the coolant flow. The results show that the cavity vortex, the horseshoe vortex, and the passage vortex are the main factors that prevent the upstream coolant from reaching the NGV passage. The jump cooling scheme provides high momentum to the cooling jets. As a result, the coolant in the design case is sufficiently energized to penetrate the horseshoe vortex, providing a desirable cooling effect in the NGV passage. Reducing the density ratio or increasing the blowing ratio can help the coolant jets further suppress the horseshoe vortex but also causes more lift-off, which adversely affects the cooling performance. On the contrary, the louver cooling scheme provides less momentum to the coolant, forming a less energized coolant film. The lack of coolant causes the louver coolant film to provide good coverage immediately downstream of the louver scheme exit. However, due to unfavorable interaction with vortices and endwall discontinuity, the cooling effect decays quickly downstream. Overall, the more-energized coolant film generated by the jump cooling tends to survive longer, but it is also more prone to lift-off. At the same time, the less-energized coolant film caused by the louver cooling is more susceptible to vortices and the discontinuity of the endwall geometry. However, it develops faster, especially in the lateral direction. The two schemes could be applied simultaneously for an ideal cooling system to work mutually beneficially.
76

Syngas ash deposition for a three row film cooled leading edge turbine vane

Sreedhran, Sai Shrinivas 10 August 2010 (has links)
Coal gasification and combustion can introduce contaminants in the solid or molten state depending on the gas clean up procedures used, coal composition and operating conditions. These byproducts when combined with high temperatures and high gas stream velocities can cause Deposition, Erosion, and Corrosion (DEC) of turbine components downstream of the combustor section. The objective of this dissertation is to use computational techniques to investigate the dynamics of ash deposition in a leading edge vane geometry with film cooling. Large Eddy Simulations (LES) is used to model the flow field of the coolant jet-mainstream interaction and the deposition of syngas ash in the leading edge region of a turbine vane is modeled using a Lagrangian framework. The three row leading edge vane geometry is modeled as a symmetric semi-cylinder with a flat afterbody. One row of coolant holes is located along the stagnation line and the other two rows of coolant holes are located at ±21.3° from the stagnation line. The coolant is injected at 45° to the vane surface with 90° compound angle injection. The coolant to mainstream density ratio is set to unity and the freestream Reynolds number based on leading edge diameter is 32000. Coolant to mainstream blowing ratios (B.R.) of 0.5, 1.0, 1.5, and 2.0 are investigated. It is found that the stagnation cooling jets penetrate much further into the mainstream, both in the normal and lateral directions, than the off-stagnation jets for all blowing ratios. Jet dilution is characterized by turbulent diffusion and entrainment. The strength of both mechanisms increases with blowing ratio. The adiabatic effectiveness in the stagnation region initially increases with blowing ratio but then generally decreases as the blowing ratio increases further. Immediately downstream of off-stagnation injection, the adiabatic effectiveness is highest at B.R.=0.5. However, in spite of the larger jet penetration and dilution at higher blowing ratios, the larger mass of coolant injected increases the effectiveness with blowing ratio further downstream of injection location. A novel deposition model which integrates different sources of published experimental data to form a holistic numerical model is developed to predict ash deposition. The deposition model computes the ash sticking probabilities as a function of particle temperature and ash composition. This deposition model is validated with available experimental results on a flat plate inclined at 45°. Subsequently, this model was then used to study ash deposition in a leading edge vane geometry with film cooling for coolant to mainstream blowing ratios of 0.5, 1.0, 1.5 and 2.0. Ash particle sizes of 5, 7, 10μm are considered. Under the conditions of the current simulations, ash particles have Stokes numbers less than unity of O(1) and hence are strongly affected by the flow and thermal fields generated by the coolant interaction with the main-stream. Because of this, the stagnation coolant jets are successful in pushing and/or cooling the particles away from the surface and minimizing deposition and erosion in the stagnation region. Capture efficiency for eight different ash compositions are investigated. Among all the ash samples, ND ash sample shows the highest capture efficiency due to its low softening temperature. A trend that is common to all particle sizes is that the percentage capture efficiency is least for blowing ratio of 1.5 as the coolant is successful in pushing the particles away from the surface. However, further increasing the blowing ratio to 2.0, the percentage capture efficiency increases as more number of particles are transported to the surface by strong mainstream entrainment by the coolant jets. / Ph. D.
77

An Analysis of a Pressure Compensated Control System of an Automotive Vane Pump

Ryan P Jenkins (6331784) 10 June 2019 (has links)
<div>Pressure compensated vane pump systems are an attractive solution in many automotive applications to supply hydraulic power required for cooling, lubrication, and actuation of control elements such as transmission clutches. These systems feature variable displacement vane pumps which offer reductions in parasitic loads on the engine and in wasted hydraulic energy at high engine speeds when compared to traditional fixed displacement supply pumps. However, oscillations in a currently available pressure compensation system limits the achievable performance and therefore the application of this solution.</div><div>This dissertation presents the development and experimental validation of a lumped parameter model in MATLAB/Simulink of a current pressure compensated vane pump system for an automatic transmission oil supply application. An analysis of the performance of this system using the validated pump model and a developed black box control system model reveals that the low cost solenoid valve present in the control circuit to set the regulation pressure limits the achievable bandwidth to 1.84Hz and causes a significant time delay in the response. To address this limitation, as well as eliminate a non-minimum phase zero introduced by the case study’s control circuit architecture, an actively controlled electrohydraulic pressure compensation system is proposed. This proposed system is explored both experimentally and in simulation making use of the accuracy of the presented variable displacement vane pump model. Significant improvements in the achievable system performance are shown with both a simple PI control law (47% reduction in the pressure response time) and an advanced cascaded model following controller based on feedback linearization (58% reduction in the pressure response time). An analysis of these results reveals that implementing the proposed control system with a 5(L/min)/bar proportional valve with a 20Hz at ±100% (60Hz at ±50%) amplitude bandwidth and a PI control law is an economical path to achieving the best performance improvements for this automotive application.</div>
78

Experimental analysis of fan noise and performance at the EESC-USP Fan Rig Workbench / Análise experimental de ruído e performance de fan na bancada EESC-USP Fan Rig Workbench

Rocamora Junior, Bernardo Martínez 08 February 2019 (has links)
The study of turbofan aeroacoustics has become important in academia and industry as noise from other aircraft sources, as jet noise, have been reduced. The EESC-USP Fan Rig is a long-duct low-speed fan experimental setup recently built at the Department of Aeronautical Engineering of the University of São Paulo. The objective is to provide a facility for studying fan aeroacoustics with a flexible configuration that allows changes in operational conditions and geometry of the rig so that each of the noise sources can be treated separately. In this work, three experimental campaign were taken aiming to extend the knowledge of this workbench capabilities and to observe the effect that some parameters can have on noise generation. A performance campaign was carried out to characterise the effects of controllable parameters on the aerodynamic characteristics of the flow. Starting from unrestricted flow to 70% area constraint, and a range of fan speeds, several flow measurements that could be translated into performance quantities were taken: volume flow rate, fan total and static pressures, compression ratio, total and net power, and efficiency. The measured compression ratio ranged from 1.00 to 1.02, with maximum axial Mach of 0.13 and maximum total efficiency of 65%. The surge effect, an unstable configuration characterised by rotor blades stall was also observed. Significant differences in fan performance due to the installation of an Inlet Control Device (ICD) and the rotor-stator spacing were not found, except under surge conditions. A parametric campaign was carried out exploring the effects of fan rotational speed, fan loading and rotor-stator spacing. Acoustic measurements were taken using an array of 77 wall-mounted microphones to provide a baseline data set for future comparisons. Hereby, data was processed to obtain the modal decomposition and power spectrum for each configuration. The last proved useful to compare tonal and broadband noise for each configuration. Experimental results indicate that changes in fan rotational speed scale noise generation mechanisms proportionally, do not affect noise spectral shape, and in consequence, are not useful to distinguish noise mechanisms. Although throttling does not seem to exhibit a clear effect on fan noise, it turns out that it is a good approach for cross-comparisons of other parameters\' effect on fan noise, because of its direct modification on the flow structure within the duct. Results also showed that increasing rotor-stator spacing reduces both blade passing frequencies tone levels and the acoustic power of the interaction modes, which are in agreement with results obtained by similar test facilities. In this work a instrumented stator vane was designed using recently available technologies, as 3D printing and the use of MEMS microphones, to measure this pressure fluctuations. Phase-averaging and the signal from a hall sensor were used to separate broadband content in time series. Broadband level distribution were analysed for two span lines of the instrumented stator vane and for a reference microphone located in the inlet antenna. Broadband levels increased with the increase in fan speed and its distribution over these span lines maintained its shape for different speeds. Cross-correlation of the microphones were calculated and showed decay of zero-delay cross-correlation with increase in distance between microphones over the vane. And, finally, the integral length scale, obtained by the integration of zero-delay cross-correlation curve, showed decay with increase in fan speed. The data generated by this work showed good agreements with what was expected from the literature and will help as input data to the semi-analytical and semi-empirical models that are being developed in parallel by the research group. / O estudo da aeroacústica de fan tornou-se importante na academia e na indústria à medida que o ruído de outras fontes nas aeronaves, como o ruído de jato, foram reduzidas. O EESCUSP Fan Rig é um túnel de vento aeroacústico voltado para fans de baixa velocidade, que foi construído recentemente no Departamento de Engenharia Aeronáutica da Universidade de São Paulo. Seu objetivo é prover uma bancada experimental para o estudo dos mecanismos de geração de ruído de fan com uma configuração flexível que permita mudanças nas condições operacionais e geométricas de forma a isolar tanto quanto possível cada uma das fontes. Neste trabalho foram realizadas três campanhas experimentais visando aprofundar os conhecimentos sobre as capacidades da bancada e observar os efeitos no ruído que algumas variações paramétricas podem gerar. Uma campanha de performance de fan foi realizada para quantificar os efeitos dos parâmetros controláveis sobre o as características aerodinâmicas do escoamento. Partindo de escoamento sem restrição até restrição de área de 70%, e para diversas velocidades de rotação do fan, diversas medidas do escoamento foram feitas para que se pudesse calcular as métricas de performance: vazão volumétrica, pressão total e estática do fan, taxa de compressão, potência útil, potência elétrica de entrada e eficiência. Os resultados apontaram para uma taxa de compressão entre 1.0 e 1.02, com Mach axial máximo de 0.13 e eficiência máxima de 65%. Os efeitos de \"surge\", uma configuração instável caracterizada pelo estol das pás do rotor também foi observado. Diferenças significativas na performance do fan devido à instalação de uma Inlet Control Device (ICD) e pelo espaçamento entre rotor e estator não foram encontradas, com exceção em condições de \"surge\". Uma campanha paramétrica para estudo de ruído foi realizada explorando os efeitos da velocidade de rotação e carregamento no fan, espaçamento entre rotor-estator e condição de entrada do escoamento no duto. Os resultados mostraram que o aumento do espaçamento do rotor-estator reduz os níveis tonais nas frequências de passagem das pás (BPFs) a uma taxa de aproximadamente 4dB quanto o espaçamento é duplicado. Os resultados experimentais indicam que as mudanças nos mecanismos de geração de ruído com a velocidade rotacional do fan escalam-se proporcionalmente, não afetam a forma espectral do ruído e, por consequência, não são úteis para distinguir os mecanismos de ruído. Embora a variação no carregamento não pareça exibir um efeito claro no ruído do fan, verifica-se que é uma boa abordagem para comparações cruzadas, em conjunto com a velocidade de rotação, do efeito de outros parâmetros no ruído do fan, já que, desta forma, é possível fazer uma modificação direta na estrutura do escoamento dentro do duto. Os modos Tyler-Sofrin, esperados pela contagem de pás e aletas usadas no conjunto rotor-estator, foram identificados e a potência acústica desses modos de interação acompanham a potências dos respectivos tons no espectro, levando à conclusão que a maior contribuição para o ruído tonal é, de fato, a interação rotor-estator. Também neste trabalho, também foi projetada uma aleta de estator instrumentada, usando tecnologias recentemente disponíveis, como a impressão 3D e o uso de microfones MEMS, para realizar medições de flutuação de pressão na superfície superior da aleta. Um método de processamento de sinal foi desenvolvido, usando a técnica de \"phase averaging\" combinada com o sinal de um sensor Hall para separar o conteúdo de banda larga em séries temporais. A distribuição do nível de ruido banda larga foi analisado para duas linhas na envergadura da aleta instrumentada e em um microfone de referência localizado na antena de microfones. Os níveis de banda larga aumentaram com o aumento da velocidade do fan e a sua distribuição ao longo destas linhas de alcance manteve a sua forma para diferentes velocidades. As correlações cruzadas dos microfones foram calculadas e mostraram o decaimento da correlação cruzada de zero-atraso com o aumento da distância entre os microfones sobre a aleta. Finalmente, a integral do comprimento de escala, obtida pela integração da curva de correlação cruzada de zero-atraso, apresentou decaimento com aumento na velocidade do fan. Os dados gerados por esse trabalho se mostraram de acordo com o esperado na literatura da área e servem de dados de entrada para modelos semi-empíricos e semi-analíticos que vem sendo desenvolvidos paralelamente pelo grupo de pesquisa.
79

Turbine blade platform film cooling with simulated stator-rotor purge flow with varied seal width and upstream wake with vortex

Blake, Sarah Anne 15 May 2009 (has links)
The turbine blade platform can be protected from hot mainstream gases by injecting cooler air through the gap between stator and rotor. The effectiveness of this film cooling method depends on the geometry of the slot, the quantity of injected air, and the secondary flows near the platform. The purpose of this study was to measure the effect of the upstream vane or stator on this type of platform cooling, as well as the effect of changes in the width of the gap. Film cooling effectiveness distributions were obtained on a turbine blade platform within a linear cascade with upstream slot injection. The width of the slot was varied as well as the mass flow rate of the injected coolant. Obstacles were placed upstream to model the effect of the upstream vane. The coolant was injected through an advanced labyrinth seal to simulate purge flow through a stator-rotor seal. The width of the opening of this seal was varied to simulate the effect of misalignment. Stationary rods were placed upstream of the cascade in four phase locations to model the unsteady wake formed at the trailing edge of the upstream vane. Delta wings were also placed in four positions to create a vortex similar to the passage vortex at the exit of the vane. The film cooling effectiveness distributions were measured using pressure-sensitive paint (PSP). Reducing the width of the slot was found to decrease the area of coolant coverage, although the film cooling effectiveness close to the slot was slightly increased. The unsteady wake was found to have a trivial effect on platform cooling, while the passage vortex from the upstream vane may significantly reduce the film cooling effectiveness.
80

Produção de pellets para energia usando diferentes resíduos de biomassa agrícolas e florestais / Production of pellets for energy using different agricultural and forest biomass residues

Jacinto, Rodolfo Cardoso 20 February 2017 (has links)
Submitted by Claudia Rocha (claudia.rocha@udesc.br) on 2017-12-11T14:10:56Z No. of bitstreams: 1 PGEF17MA071.pdf: 3339958 bytes, checksum: 6c6ef4234c617d50586b53b12015fa7d (MD5) / Made available in DSpace on 2017-12-11T14:10:56Z (GMT). No. of bitstreams: 1 PGEF17MA071.pdf: 3339958 bytes, checksum: 6c6ef4234c617d50586b53b12015fa7d (MD5) Previous issue date: 2017-02-20 / The objective of the present work was to determine the technical parameters for the compaction and the quality of the pellets produced from different types of forest biomass and residual agricultural biomass. The choice of the types of biomass was based on the production volume of the main agricultural and forestry crops of the State of Santa Catarina, and the economic, social and environmental importsnce of the same for the segments that produce them. In this way, the physical, chemical and energetic properties of four types of agricultural and forest residual biomass (Pinus chip, apple pruning branches, pinyon faults and araucaria grimpa) were used to produce the pellets. Thirteen treatments in the study were analyzed, consisting of pellets produced with: 100% pinus (P100), considered as a control treatment; 75% pinus and 25% of one of the analyzed residues (F25P75, when the residue was pinion failure, G25P75, for the treatment containing grimpa, and Pm25P75, when the treatment had apple pruning); 50% of pine and 50% of other analyzed components, being F50P50 (for pinion failure), G50P50 (grimpa) and Pm50P50 (apple pruning); (F100P25), G75P25 (Grimpa) and Pm75P25 (apple pruning) and the homogeneous treatments with 100% of failure (F100); 100% grimpa (G100) and 100% apple pruning (Pm100). For each treatment was established for the ideal parameters of temperature, pressure and compaction of the pellets produced in laboratory pelletizer. These data were established based on the physical and chemical properties of biomasses in nature and also on the quality of the non-process obtained pellet by means of successive compaction tests. After production of the pellets a quality of this biofuel was determined by its physical, mechanical, chemical and energetic properties. From the results obtained in the laboratory, pellets were classified based on the quality criteria of ISO 17225-2 for biomass pellets for energy generation. It was concluded that the treatments F75P25, G75P25 G50P50 and G25P75 were the only ones that reached quality for residential and commercial use. The treatment with better quality for residential and commercial use was treatment G25P75. The treatments Pm100, Pm75P25, Pm50P50, Pm25P75 and G100 did not achieve average ratings in relation to ISO 17225-2 for any quality category described in the standard / O objetivo do presente trabalho foi determinar os parâmetros técnicos para a compactação e a qualidade dos pellets produzidos a partir de diferentes tipos de biomassa florestal e agrícola residual. A escolha dos tipos de biomassa foi baseada no volume de produção dos resíduos das principais culturas agrícolas e florestais do Estado de Santa Catarina, e da importância econômica, social e ambiental dos mesmos para os segmentos que os produzem. Desta forma, foram caracterizadas as propriedades físicas, químicas e energéticas de quatro tipos de biomassas residuais agrícolas e florestais (maravalha de pinus, galhos de poda de macieira; falhas de pinhão; grimpa de araucária) que foram utilizadas para a produção dos pellets. Foram analisados 13 tratamentos no estudo, que consistiram de pellets produzidos com: 100% de pinus (P100), considerado como tratamento testemunha; 75% de pinus e 25% de um dos resíduos analisados (F25P75, quando o resíduo era a falha de pinhão, G25P75, para o tratamento contendo grimpa, e Pm25P75, quando o tratamento possuía poda de maça); 50% de pinus e 50% de outro componente analisado, sendo F50P50 (para falha de pinhão), G50P50 (grimpa) e Pm50P50 (poda de maça); misturas contendo 25% de pinus e 75% do outro resíduo analisado, sendo F75P25 (falha de pinhão), G75P25 (grimpa) e Pm75P25 (poda de maça) e os tratamentos homogêneos com 100% de falha (F100); 100% de grimpa (G100) e 100% de poda de maça (Pm100). Para cada tratamento foram estabelecidos os parâmetros ideais de temperatura, pressão e velocidade de compactação dos pellets produzidos em peletizadora piloto de laboratório. Estes parâmetros foram estabelecidos com base nas propriedades físicas e químicas das biomassas in natura, e também em função da qualidade do pellet obtido no processo, por meio de testes de compactação sucessivos. Após a produção dos pellets foi determinada a qualidade deste biocombustível por meio de suas propriedades físicas, mecânicas, químicas e energéticas. A partir dos resultados obtidos em laboratório, os pellets foram classificados com base nos critérios de qualidade da norma ISO 17225-2 para pellets de biomassa para geração de energia. Concluiu-se que os tratamentos F75P25, G75P25 G50P50 e G25P75 foram os únicos que atingiram qualidade para uso residencial e comercial. O tratamento com melhor qualidade para uso residencial e comercial foi o tratamento G25P75. Os tratamentos Pm100, Pm75P25, Pm50P50, Pm25P75 e G100 não conseguiram classificações médias em relação a ISO 17225-2 para nenhuma categoria de qualidade descrita na norma

Page generated in 0.0627 seconds