• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 734
  • 541
  • 128
  • 75
  • 47
  • 28
  • 22
  • 18
  • 16
  • 13
  • 12
  • 12
  • 12
  • 12
  • 12
  • Tagged with
  • 1928
  • 654
  • 612
  • 199
  • 198
  • 192
  • 183
  • 179
  • 175
  • 152
  • 145
  • 140
  • 139
  • 119
  • 116
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
891

Estudo da influência da sucção na pressão de expansão de materiais argilosos com a técnica da transferência de vapor / The influence of the suction in swelling pressure of clay materials with vapour transfer technique

Souza, Rafaela Faciola Coelho de 12 March 2015 (has links)
Este trabalho apresenta a quantificação da expansão e suas características, principalmente a influência da sucção, em amostras de materiais sedimentares argilosos provenientes da Formação Corumbataí, aflorantes no interior do estado de São Paulo. Foram testadas amostras indeformadas, e amostras destorroadas e compactadas em diferentes umidades, em ensaios de pressão de expansão a volume constante por inundação, e também, com sucção controlada por meio da técnica da transferência de vapor. Foram ensaiadas, ainda, misturas compactadas desse material com bentonita em diferentes proporções, e misturas de bentonita com material não expansivo arenoso oriundo da Formação Botucatu. O controle de sucção foi realizado pelo uso de soluções salinas de NaCl em concentrações preparadas para impor sucções de 40.000, 25.000, 10.000 e 5.000 kPa. Para a realização dos ensaios, construiu-se um sistema de aplicação de cargas e de aquisição automática dos dados de pressão. Para acelerar o processo de umedecimento por vapor, utilizou-se um reservatório externo ligado em uma bomba de ar adaptada para promover a circulação do vapor de ar para dentro da célula edométrica, especialmente construída para esta pesquisa. Os resultados de expansão nos ensaios com inundação mostraram pressões de expansão crescentes com a diminuição dos teores de umidade, e consequente aumento da sucção inicial das amostras ensaiadas, bem como crescentes com o aumento na proporção de bentonita nas misturas, com valores máximos em torno de 700 kPa para o ensaio com a bentonita pura compactada seca. A análise da microestrutura das amostras por meio da porosimetria por intrusão de mercúrio permitiu constatar que as amostras indeformadas apresentaram variação, apenas, nos macroporos após a expansão; e as compactadas na umidade ótima e, posteriormente secas ao ar, não mostraram evolução significativa após a expansão. Na microscopia eletrônica de varredura (MEV) foi possível verificar a mudança nos vazios das amostras, bem como, visualizar a variação na estrutura e na textura. Além disso, no MEV foram confirmados, também, os argilominerais determinados na caracterização mineralógica. Os resultados dos ensaios de expansão com sucção controlada mostraram ausência de pressão de expansão para as amostras da Formação Corumbataí nas condições indeformada, e na condição compactada na umidade ótima e posteriormente seca ao ar. No entanto, esse material, quando compactado seco na forma de pó, e também, compactado seco misturado com bentonita em diferentes proporções, revelou pressões de expansão com a transferência de vapor, assim como, as misturas de bentonita com material não expansivo da Formação Botucatu. A ausência de expansão foi justificada pela forma lenta de umedecimento proporcionada pela transferência de vapor que, apesar de promover o aumento do teor de umidade das amostras, não mobilizou variação volumétrica suficientemente capaz de transmitir como pressão de expansão. Portanto, os ensaios de expansão, com a utilização da técnica de transferência de vapor, foram efetivos para avaliar a expansão somente nos casos em que argilominerais com potencial expansivo estavam presentes em proporções consideráveis. / This thesis presents the quantification and characterization of expansion, especially the influence of suction on samples of sedimentary materials from Corumbatai Formation that occurs in Sao Paulo. Undisturbed and compacted samples with different moisture contents were tested with swelling pressure tests at constant volume method by flooding, and also with suction control by vapour transfer technique. Compacted mixtures of this material with bentonite in differents proportions, and mixtures of bentonite with sandy non-expansive material from the Botucatu Formation were also tested. The suction control was performed by the use of NaCl salt solutions at concentrations prepared to perform 40,000, 25,000, 10,000 and 5,000 kPa suctions. For the tests, it was developed a system for load application and automatic retrieval of pressure. To accelerate the wetting process by vapour, we used an external reservoir connected to an air pump adapted to promote air circulation inside the edometric cell, specially made for this study. The expansion results in flooding tests showed increasing swelling pressure with decreasing moisture content. Consequently there was an increase in the initial suction of the tested samples, which kept increasing as the rate of bentonite was raised in the mixtures, with a peak of ca. 700 kPa for the test with dry pure bentonite compacted. In the microstructure analysis of the samples by mercury intrusion porosimetry, the samples showed variation only in macropores after swell; and the ones compacted at optimum moisture, and subsequently air dried, showed no significant change after the swell. In scanning electron microscopy (SEM) it was possible to verify the change in the voids of the samples, as well as to visualize the variation in the structure and texture. In addition, the SEM confirmed clay minerals deterninated in mineralogical characterization. The results of controlled suction with swell tests showed absence of swell pressure for Corumbatai samples tested in undisturbed conditions, and compacted condition at optimum moisture content, and then air dried. However, when compacted in the form of dry powder, as well as when compacted dry, mixed with different proportions of bentonite, this material showed swelling pressures with vapor transfer technique, as well as mixtures of bentonite with non-expansive material of Botucatu Formation. The absence of swell was explained by the slow damping provided by the vapor transfer that although promoting increasing dampen, did not sufficiently mobilized volume variation capable of transmitting blowing pressure. Therefore, the swell tests with the vapor transfer technique were effective to evaluate the swelling just in cases where clay minerals with swell potential were present in significant proportions.
892

Desenvolvimento de catalisadores de Rh/Ni/YSZ e Ru/Ni/YSZ para a reforma interna de etanol em ânodos de células a combustível de óxido sólido / Development of Rh/Ni/YSZ and Ru/Ni/YSZ for the ethanol steam reforming in anode of solid fuel cells

Oliveira, Drielly Cristina de 18 September 2012 (has links)
Neste trabalho, investigou-se a atividade catalítica de materiais a base de Ni/YSZ modificados com Rh ou Ru a 0,5%, 1% e 3%, para a reforma a vapor de etanol (RVE) e seus desempenhos como eletrocatalisadores em células a combustível de óxido sólido (SOFCs - Solid Oxide Fuel Cell). Os catalisadores foram preparados pelo método Pechini e de impregnação. A caracterização estrutural foi realizada utilizando-se as técnicas de Energia Dispersiva de Raios X, Difratometria de Raios X, Redução à Temperatura Programada, Fisissorção de Nitrogênio, Microscopia Eletrônica de Varredura e Análise Elementar. Os testes catalíticos foram realizados a 700 e 900 °C, em uma linha de reação acoplada a um cromatógrafo a gás para o monitoramento dos produtos reacionais gasosos. Os produtos líquidos resultantes da RVE foram analisados por Cromatografia Líquida de Alta Eficiência (CLAE). O objetivo principal foi correlacionar a estrutura e a composição destes materiais com a produção de H2, distribuição de outros produtos reacionais e formação de depósitos de carbono. Os resultados obtidos mostraram que a incorporação de Rh ou Ru no catalisador de Ni/YSZ não resultou em mudanças significativas na estrutura e atividade catalítica, porém promoveu uma diminuição na quantidade de carbono formado, sendo mais expressiva para o caso da adição de Rh. O aumento da temperatura de reação de 700 °C para 900 °C resultou em um aumento da seletividade dos catalisadores para os produtos gasosos e diminuição da formação de coque. O estudo em uma célula unitária de SOFC foi conduzido utilizando-se platina no cátodo e 3%Rh/40%Ni/YSZ(P) no ânodo, em uma célula operando com H2 e ar a 900 °C. Embora as curvas de polarização tenham apresentado baixas densidades de potência, os resultados mostraram que o material de 3%Rh/40%Ni/YSZ(P) foi ativo para a produção e eletro-oxidação de H2 em condições reais de operação das SOFCs. Além disso, mostrou-se que é possível investigar a atividade de eletrocatalisadores de ânodos de SOFC para a reforma de etanol em linhas de reação comumente utilizadas em estudos de catálise heterogênea. / In this work, it was investigated the electrocatalytic activity of Ni/YSZ promoted with Rh or Ru (0.5 wt%, 1.0 wt% and 3.0 wt% content) for the Ethanol Steam Reforming (ESR) reaction, and their performance as electrocatalysts in Solid Oxide Fuel Cells (SOFCs). The catalysts were prepared by the Pechini and Impregnation methods. The material characterization was carried out by Energy Dispersive X-ray (EDX), X-ray Diffraction (DRX), Temperature Programmed Reduction (TPR-H2), N2 physisorption, Scanning Electron Microscopy (SEM), and Elemental Analysis. The catalytic tests were performed at 700 and 900 °C in a reaction system coupled to a gas chromatograph in order to monitor the gaseous products. The liquid products were analyzed by High Performance Liquid Chromatography (HPLC). The structure and composition of these catalysts were correlated to the H2 formation, with the distribution of other parallel reaction products, including the carbon deposition. The obtained results showed that the incorporation of Rh or Ru does not change significantly the structure and catalytic activity, but it decreases the carbon deposits, being more significant for the addition of Rh. The increase of the reaction temperature from 700 °C to 900 °C increased the gaseous products selectivities and decreased the carbon deposition. The study in SOFC unit cells were conducted using platinum and 3%Rh/40%Ni/YSZ(P) in the cathode and anode, respectively. The SOFC operated with H2 and air, and 900 °C. Although the polarization curves have presented low power densities, the obtained results showed that the 3%Rh/40%Ni/YSZ(P) electrocatalyst was active for the H2 production and eletro-oxidation in the SOFC real operation conditions. Furthermore, the results have demonstrated that it is possible to investigate SOFC electrocatalysts activity for the ethanol steam reforming in reaction lines commonly utilized in heterogeneous catalysis studies.
893

Comparing Laser Assisted Pulling and Chemical Vapor Deposition Methods in the Fabrication of Carbon Ultramicro- and Nanoelectrodes

Neequaye, Theophilus 01 August 2018 (has links)
Ultramicroelectrodes (UMEs) (limiting dimensions <~25 μm) and nanoelectrodes (<~100 nm) exhibit enhanced electrochemical properties compared to macroscopic electrodes. Their small sizes and enhanced properties make them well-suited for various interesting and important applications such as measuring redox-active species in nonaqueous solvents, studying intermediates of fast electrochemical reactions, and investigating electrochemical and electrocatalytic properties of single nanoparticles. While UMEs are commercially available, nanoelectrode fabrication is still largely confined to research labs. Various methods for constructing nanoelectrodes have been reported and continue to be developed, but most require considerable expertise, and comparisons between different fabrication processes are lacking. In this work, a comparison of laser-assisted pulling and chemical vapor deposition (CVD) methods of electrode fabrication is made with the aim of optimizing production of carbon nanoelectrodes for single nanoparticle electrochemical measurements. By examining effects of pulling parameters, post-pulling treatments, and CVD processing, electrodes as small as ~50 nm were successfully produced.
894

Improving Thermodynamic Consistency Among Vapor Pressure, Heat of Vaporization, and Liquid and Ideal Gas Heat Capacities

Hogge, Joseph Wallace 01 December 2017 (has links)
Vapor pressure (Pvap), heat of vaporization (ΔHvap), liquid heat capacity (Cpl), and ideal gas heat capacity (Cpig) are important properties for process design and optimization. This work focuses on improving the thermodynamic consistency and accuracy of the aforementioned properties since these can drastically affect the reliability, safety, and profitability of chemical processes. They can be measured for pure organic compounds from the triple point, through the normal boiling point, and up to the critical point. Additionally, ΔHvap is proportional to the derivative of vapor pressure with respect to temperature through the Clapeyron equation, and the difference between Cpl and Cpig is proportional to the derivative of heat of vaporization with respect to temperature. In order to improve temperature-dependent correlations, all the properties were analyzed simultaneously. First, a temperature-dependent error model was developed using several versions of the Riedel and Wagner Pvap correlations. The ability of each correlation to match Cpl data was determined for 5 well-known compounds. The Riedel equation performed better than the Wagner equation when the best form was used. Second, the Riedel equation form was further modified, and the best correlation form was found for about 50 compounds over 7 families. This led to the development of a new vapor pressure prediction method using different Riedel equation forms to fit Pvap, ΔHvap, and Cpl data simultaneously. Seventy compounds were tested, and the error compared to liquid heat capacity data dropped from 10% with previous methods to 3% with this new prediction method. Additionally a differential scanning calorimeter (DSC) was purchased, and melting points (Tm), enthalpies of fusion (ΔHfus), and liquid heat capacities (Cpl) were measured for over twenty compounds. For many of these compounds, the vapor pressure data and critical constants were re-evaluated, and new vapor pressure correlations were recommended that were thermodynamically consistent with measured liquid heat capacity data. The Design Institute for Physical Properties (DIPPR) recommends best constants and temperature-dependent values for pure compounds. These improvements were added to DIPPR procedures, and over 200 compounds were re-analyzed so that the temperature-dependent correlations for Pvap, ΔHvap, Cpig, and Cpl became more internally consistent. Recommendations were made for the calculation procedures of these properties for the DIPPR database.
895

Growth and Characterization of Nanocrystalline Diamond Films for Microelectronics and Microelectromechanical Systems

Jeedigunta, Sathyaharish 29 May 2008 (has links)
Diamond is widely known for its extraordinary properties, such as high thermal conductivity, energy bandgap and high material hardness and durability making it a very attractive material for microelectronic and mechanical applications. Synthetic diamonds produced by chemical vapor deposition (CVD) methods retain most of the properties of natural diamond. Within this class of material, nanocrystalline diamond (NCD) is being developed for microelectronic and microelectromechanical systems (MEMS) applications. During this research, intrinsic and doped NCD films were grown by the microwave plasma enhanced chemical vapor deposition (MPECVD) method using CH4/Ar/H2 gas mixture and CH4/Ar/N2 gas chemistries respectively. The first part of research focused on the growth and characterization of NCD films while the second part on the application of NCD as a structural material in MEMS device fabrication. The growth processes were optimized by evaluating the structural, mechanical and electrical properties. The nature of chemical bonding, namely the ratio of sp²:sp³ carbon content was estimated by Raman spectroscopy and near edge x-ray absorption fine structure (NEXAFS) techniques. The micro-structural properties were studied by x-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The mechanical properties of the pure NCD films were evaluated by nano-indentation. The electrical properties of the conductive films were studied by forming ohmic as well as schottky contacts. In second part of this study, both free-standing and membrane capped field emitter devices were fabricated by a silicon mold technique using nitrogen incorporated (i.e., doped) NCD films. The capped field emission devices act as a prototype vacuum microelectronic sensor. The field emission tests of both devices were conducted using a diode electrical device model. The turn-on field and the emission current of free-standing emitter devices was found to be approximately 0.8 V/µm and 20 µA, respectively, while the turn-on fields of capped devices increased by an order of magnitude. The emission current in the field emission sensor changed from 1 µA to 25 µA as the membrane was deflected from 280 µm to 50 µm from the emission tip, respectively.
896

Nanomanufacturing of Silica Nanowires: Synthesis, Characterization and Applications

Sekhar, Praveen Kumar 29 October 2008 (has links)
In this research, selective and bottom-up manufacturing of silica nanowires on silicon (Si) and its applications has been investigated. Localized synthesis of these nanowires on Si was achieved by metal thin film catalysis and metal ion implantation based seeding approach. The growth mechanism of the nanowires followed a vapor-liquid-solid (VLS) mechanism. Mass manufacturing aspects such as growth rate, re-usability of the substrate and experimental growth model were also investigated. Further, silica nanowires were explored as surface enhanced Raman (SER) substrate and immunoassay templates towards optical and electrochemical detection of cancer biomarkers respectively. Investigating their use in photonic applications, optically active silica nanowires were synthesized by erbium implantation after nanowire growth and implantation of erbium as a metal catalyst in Si to seed the nanowires. Ion implantation of Pd in Si and subsequent annealing in Ar at 1100° C for 60 mins in an open tube furnace resulted in silica nanowires of diameters ranging from 15 to 90 nm. Similarly, Pt was sputtered on to Si and further annealed to obtain silica nanowires of diameters ranging from 50 to 500 nm. Transmission electron microscopy studies revealed the amorphous nature of the wires. In addition, nano-sized Pd catalyst was found along the body of the nanowires seeded by Pd implantation into Si. After functionalization of the wires with 3-AminoPropylTriMethoxySilane (APTMS), the Pd decorated silica nanowires served as an SER substrate exhibiting a sensitivity of 107 towards the detection of interleukin-10 (IL-10, a cancer biomarker) with higher spatial resolution. Voltammetric detection of IL-10 involved silica nanowires synthesized by Pd thin film catalysis on Si as an immunoassay template. Using the electrochemical scheme, the presence of IL-10 was detected down to 1fg/mL in ideal pure solution and 1 pg/mL in clinically relevant samples. Time resolved photoluminescence (PL) results from the Er doped silica nanowires indicate a sharp emission around 1.54 µm representative of the I13/2 to I15/2 transition in Erbium. Also, a five-fold increase in the PL intensity and 30% augment in luminescence life time have been observed in nanowires when compared to fused silica sample prepared under similar conditions. The experimental results indicate the potential of silica nanowires in a wide variety of applications such as the development of orthogonal biosensors, fabrication of metallic nanowires, and environmental sensing probes.
897

Spherulitic Growth and Thermodynamic Equilibrium in Multicomponent Elastic Films Under Solvent-vapor Annealing

Zhao, Ding 01 January 2018 (has links)
In this dissertation, we will study solvent-vapor induced spherulitic growth in multicomponent thin films modeled as prestressed elastic solids. The interface between the crystalline phase and the amorphous phase will be treated as an evolving thermodynamic system and no diffusion of any component will be considered. The dissertation is divided into three parts. In Part I we will determine necessary conditions of thermodynamic equilibrium between the two solid phases, the inter- face, and the vapor. In Part II we will derive the thermodynamic driving force for spherulitic growth in multicomponent elastic thin films. In Part III we will investigate the effect of prestress on the directional dependence of the growth. There a formula that delineates how the prestress affects the shape of the spherulite will be proposed.
898

A Theoretical Description of the Vibrational Sum Frequency Generation Spectroscopy of Interfaces

Perry, Angela S 06 July 2005 (has links)
Our work investigates theoretical approximations to the interface specific sum frequency generation (SFG) spectra at aqueous interfaces constructed using time correlation function (TCF) and instantaneous normal mode (INM) methods. Both approaches lead to signals in excellent agreement with experimental measurements. This work demonstrates how TCF and INM methods can be used in a complementary fashion to describe interfacial vibrational spectroscopy. Our approach is to compare TCF spectra with experiment to establish that our molecular dynamics (MD) methods can reliably describe the system of interest. We then employ INM methods to analyze the molecular and dynamical basis for the observed spectroscopy. We have been able to elucidate, on a molecularly detailed basis, a number of interfacial line shapes, most notably the origin of the complex O-H stretching SFG signal, and the identity of several intermolecular modes in the SFG spectra for the water/vapor interface. The success of both approaches suggests that theory can play crucial role in interpreting SFG spectroscopy at more complex interfaces.
899

CVD Growth of SiC on Novel Si Substrates

Myers, Rachael L 27 October 2003 (has links)
Silicon Carbide has been a semiconductor material of interest as a high power and temperature replacement for Silicon (Si) in harsh environments due to the higher thermal conductivity and chemical stability of SiC. The cost, however, to produce this material is quite high. There are also defects in the substrate material (SiC) that penetrate into the active devices layers which are known device killers. Silicon is a material that provides a low cost substrate material for epitaxial growth and does not contain the defects that SiC substrates have. However, the large (~22%) lattice mismatch between Si and SiC creates dislocations at the SiC/Si interface and defects in the SiC epitaxial layer. These defects result in high leakage currents in 3C-SiC/Si devices. The main focus of the this research was to reduce or eliminate these defects using novel Si substrates. First a 3C-SiC on Si baseline process was developed under atmospheric pressure conditions consisting of 3 steps - an in-situ hydrogen etch to remove the native oxide, a carbonization step to convert the Si surface to SiC, and finally a growth step to thicken the SiC layer to the desired value. This process was then modified to establish a high-quality, low-pressure 3C-SiC CVD growth process. This LPCVD process was then used to grow 3C-SiC on numerous novel Si substrates, including porous Si, porous 3C-SiC "free-standing" substrates and SOI substrates which consisted on thin Si films bonded to poly-crystalline SiC plates. The results of these experiments are presented along with suggestions for future work so that device-grade films of 3C-SiC can be developed for various applications.
900

Evaluation of the Public Health Risks Associated with Former Manufactured Gas Plants

DeHate, Robin Brewer 27 October 2008 (has links)
Regulatory agencies have recently focused on assessing the potential for soil vapor intrusion (SVI) and risk posed to occupants of residential and commercial properties overlying and surrounding former Manufactured Gas Plants (MGPs). This study evaluated the potential for SVI at 10 commercial buildings and 26 single family and multi-family residential properties overlying and/or adjacent to three former MGPs. The potential for SVI exposure was categorized into three groupings according to thickness of the vadose zones: no vadose zone; 0 - 6 feet thick, and 6 to 25 feet thick. Indoor and outdoor air and soil vapor samples were collected and analyzed for VOCs by the USEPA Method TO-15. These findings were compared to federal and state regulatory background data sets. The results did not identify evidence of MGP-related soil vapor intrusion from any of the 36 sites regardless of depth to water table or proximity to MGP source tar or dissolved phase plumes. In addition, comparative risks were calculated based on maximum and mean concentrations for benzene, toluene, ethylbenzene, and xylenes measured in ambient air samples, soil vapor, and indoor air. These chemicals were selected based on frequency of detection within the data sets. Hazard Indexes were calculated using the study results and the mean, maximum and 95th percentile concentrations from regulatory data bases. Carcinogenic risks associated with benzene were calculated using both the measured mean and maximum study results and the mean, maximum and 95th percentile concentrations from state and federal data bases. The calculated Hazard Indexes were less than 1 or were comparable to the regulatory mean and maximum background levels. Calculated cancer risks for residential and occupational exposures ranged from 9.75x10-6 to 4.52x10-4. However background benzene exposure not related to former MGP sites ranged from 9.9x10-6 to 3.59x10-3. Cancer risk and exposures to indoor air, soil vapor or ambient air concentrations were equivalent or less than a normal resident in the northeast United States. No increased public health risks were associated with occupied residential or commercial properties overlying or surrounding MGPs.

Page generated in 0.0628 seconds