391 |
Carbon Nanotubes: Chemical Vapor Deposition Synthesis and Application in Electrochemical Double Layer SupercapacitorsTurano, Stephan Parker 08 March 2005 (has links)
Carbon nanotubes (CNTs) have become a popular area of materials science research due to their outstanding material properties coupled with their small size. CNTs are expected to be included in a wide variety of applications and devices in the near future. Among these devices which are nearing mass production are electrochemical double layer (ECDL) supercapacitors. The current methods to produce CNTs are numerous, with each synthesis variable resulting in changes in the physical properties of the CNT.
A wide array of studies have focused on the effects of specific synthesis conditions. This research expands on earlier work done using bulk nickel catalyst, alumina supported iron catalyst, and standard chemical vapor deposition (CVD) synthesis methods. This work also investigates the effect of an applied voltage to the CVD chamber during synthesis on the physical nature of the CNTs produced. In addition, the work analyzes a novel nickel catalyst system, and the CNTs produced using this catalyst. The results of the effects of synthesis conditions on resultant CNTs are included. Additionally, CNT based ECDL supercapacitors were manufactured and tested.
Scanning electron microscope (SEM) analysis reveals that catalyst choice, catalyst thickness, synthesis temperature, and applied voltage have different results on CNT dimensions. Nanotube diameter distribution and average diameter data demonstrate the effect of each synthesis condition. Additionally, the concept of an alignment parameter is introduced in order to quantify the effect of an electric field on CNT alignment. CNT based ECDL supercapacitors testing reveals that CNTs work well as an active material when a higher purity is achieved. The molarity of the electrolyte also has an effect on the performance of CNT based ECDL supercapacitors.
On the basis of this research, we conclude that CNT physical dimensions can be moderately controlled based on the choice of synthesis conditions. Also, the novel nickel catalyst system investigated in this research has potential to produce bulk quantities of CNT under specific conditions. Finally, purified CNTs are recommended as a suitable active material for ECDL supercapacitors.
|
392 |
Effect of nano-carburization of mild steel on its surface hardnessHassan, Ajoke Sherifat 14 April 2016 (has links)
There has been progress in the surface modification of low carbon steel in order to enhance its surface hardness. This study contributes to this by investigating the introduction of carbon nanotubes and amorphous carbon in the carburization of mild steel.
In order to achieve the goal, carbon nanotubes were synthesized in a horizontal tubular reactor placed in a furnace also called the chemical vapor deposition process at a temperature of 700oC. Catalyst was produced from Iron nitrate Fe(NO3)3.9H2O and Cobalt nitrate Co(NO3)2.6H2O on CaCO3 support while acetylene C2H2 was used as the carbon source and nitrogen N2 was used as contaminant remover. The as-synthesized carbon nanotubes were purified using nitric acid HNO3 and characterized using scanning electron microscopy (SEM), thermo-gravimetric analysis (TGA) and fourier transform infrared spectroscopy (FTIR). It was found that as-synthesized carbon nanotubes had varying lengths with diameters between 42-52 nm from the SEM and the TGA showed the as-synthesized CNTs with a mass loss of 78% while purified CNTs had 85% with no damage done to the structures after using the one step acid treatment.
The as-synthesized and purified carbon nanotubes were used in carburizing low carbon steel (AISI 1018) at two austenitic temperatures of 750oC and 800oC and varying periods of 10-50 minutes while amorphous carbon obtained by pulverizing coal was also used as comparison. The mild steel samples were carburized with carbon nanotubes and amorphous carbon in a laboratory muffle furnace with a defined number of boost and diffusion steps. The carburizing atmosphere consisted of heating up to the varying temperatures at a speed of 10oC/minute, heating under this condition at varying periods, performing a defined number of boost and diffusion processes at the varying temperatures and cooling to room temperatures under the same condition. The carburized surfaces were observed with the Olympus SC50 optical microscope and the hardness distribution of the carburized layer was inspected with a Vickers FM 700 micro-hardness tester.
The as-synthesized and purified CNT samples showed higher hardness on the surface of the mild steel than the amorphous carbon. In the same vein, the change in the microstructures of vi
the steel samples indicated that good and improved surface hardness was obtained in this work with the reinforcements but with purified CNT having the highest peak surface hardness value of 191.64 ± 4.16 GPa at 800oC, as-synthesized CNT with 177.88 ± 2.35 GPa and amorphous carbon with 160.702 ± 5.79 GPa which are higher compared to the values obtained at 750oC and that of the original substrate which had a surface hardness of 145.188 ± 2.66 GPa. The percentage hardness obtained for the reinforcement with the amorphous carbon, the CNT and the pCNT showed an increase of 5.47%, 10.04% and 15.77% respectively at 750oC when compared to that of the normal substrate carburized without reinforcements. Furthermore, at 800oC, the reinforcement with the amorphous carbon, the CNT and the pCNT show a percentage hardness increase of 7.04%, 14.68% and 22.05% when compared to that of the normal substrate carburized without reinforcements. Comparing the reinforcement potential of the amorphous carbon, the CNT and the pCNT at 750oC, the percentage hardness reveal that using pCNT displayed an increase of 10.89% over that of amorphous carbon and of 6.37% over that of CNT. In addition, the use of CNT as reinforcement at 750oC displayed a percentage hardness increase of 4.83% over that of the amorphous carbon carburized at the same temperature / Civil and Chemical Engineering / M. Tech. (Chemical Engineering)
|
393 |
Avaliação histológica da resposta pulpar humana a diferentes técnicas de instrumentação cavitária e de restauração / Histological evaluation of the human pulp response to different cavity instrumentation and restorative techniquesLourdes Rosa Chiok Ocaña 27 November 2009 (has links)
Este estudo se propõe a analisar a resposta pulpar de dentes humanos a preparos cavitários de classe V, em função de duas diferentes técnicas de instrumentação e de duas diferentes técnicas de restauração. Para tal, cavidades classe V, nas superfícies vestibulares de 48 pré-molares hígidos de pacientes entre 11 e 25 anos, que estavam em tratamento ortodôntico, foram preparadas e restauradas de acordo com os seguintes grupos experimentais: G 1 (n=24) - preparos cavitários realizados com ponta diamantada em alta rotação, restaurados com guta-percha plastificada, cimento ionômero de vidro e verniz cavitário (G 1A; n=12) ou com técnicas adesivas (sistema restaurador adesivo aplicando-se o condicionamento ácido total) e cimento ionômero de vidro (G 1B; n=12); G 2 (n=24) - preparos cavitários com ponta CVD ativada por ultrassom, restaurados com gutapercha plastificada, cimento ionômero de vidro e verniz cavitário (G 2A; n=12) ou com técnicas adesivas (sistema restaurador adesivo aplicando-se o condicionamento ácido total) e cimento ionômero de vidro (G 2B; n=12); e G 3 (controle; n=4) - dentes que foram extraídos sem a realização de qualquer procedimento. Os preparos cavitários foram realizados mantendo o assoalho da cavidade o mais próximo possível da polpa, no entanto, sem provocar exposição pulpar. Os dentes foram extraídos após três períodos experimentais (imediato, sete e trinta dias após o preparo cavitário), fixados, descalcificados, e processados histologicamente. Cortes teciduais longitudinais seriados de 5 m foram obtidos, corados pelas técnicas de H & E e de Brown & Brenn, e examinados em microscopia ótica. As avaliações morfométricas e por escores foram realizadas e os resultados das mesmas, submetidos, respectivamente, aos testes estatísticos de Mann-Whitney e de Kruskal-Wallis/Dunn, adotando-se um nível de significância de 5%. No período inicial, todos os grupos experimentais (1A, 1B, 2A e 2B) exibiram ligeiro desarranjo da camada odontoblástica vacuolizada e leve invasão da zona acelular de Weil. Não houve diferença entre os grupos experimentais iniciais e o grupo controle. No intervalo de sete dias, pôde-se observar redução da camada odontoblástica, muitos núcleos de odontoblastos aspirados nos túbulos dentinários, alguns espécimes com ausência de pré-dentina e resposta inflamatória aguda com hemorragia. Trinta dias depois, cinco espécimes do total avaliado apresentaram dentina terciária; dois espécimes do grupo 1B apresentaram necrose relacionada com a presença de bactérias nos túbulos dentinários; e os demais mostraram graus variados de inflamação crônica, associados a restaurações adesivas ou a processos de reparo, com proliferação de vasos e persistência de focos de hemorragia. Portanto, os dois tipos de instrumentação cavitária promovem respostas pulpares similares entre si, mas as diferentes técnicas restauradoras promovem efeitos significativamente diferentes sobre o complexo dentinopulpar. / The aim of this study is to analyze the pulp response of human teeth to class V cavity preparation, in function of two different instrumentation and restorative techniques. Class V cavities were made on the buccal surfaces of 48 sound human pre-molars from orthodontic patients from 11 to 25 years, and were divided as follows: G1 (n=24) cavity preparations were made with diamond bur under high speed, restored with either plasticized gutta-percha, glass ionomer cement and surface coated with varnish (G1A) or adhesive protocol (total etch technique and adhesive system application) with glass ionomer filling (G1B); G2 (n=24) cavity preparations were made with diamond CVD point and ultrasonic device, restored with either plasticized gutta-percha, glass ionomer cement and surface coated with varnish (G2A) or adhesive protocol (total etch technique and adhesive system application) with glass ionomer filling (G2B); and control group G3 (n=4) extracted teeth with no previous cavity preparation. All avities were prepared with the cavity floor as close to the pulp as possible, without causing pulp exposure. Teeth extractions were made in three experimental periods (immediate, 7 and 30 days after cavity preparation) and right after extraction they were submitted to histological procedures. Longitudinal tissue serial sections of 5 mm were obtained, H&E and Brown&Brenn stained, and analyzed under optical microscope. Morphometric and score evaluations were carried out and data from both were, respectively, submitted to Mann-Whitney and Kruskal-Wallis/Dunn tests, with 5% significance. Immediately, all experimental groups (1A, 1B, 2A and 2B) exhibited a discrete disorganization of the odontoblastic layer and invasion of the Weil zone. There was no difference between experimental and control groups. At 7-day interval, a decrease of the odontoblastic layer was observed. Many odontoblasts nucleus were seen displaced into the dentinal tubules. Some specimens showed absence of pre-dentine and inflammatory pulp response with hemorrhage. Thirty days later, five specimens presented tertiary dentin formation; two specimens from group 1B presented necrosis coincident with bacteria inside the dentinal tubules; the other specimens showed various degrees of chronic inflammation, associated to adhesive restorations or repair processes, with blood vessels proliferation and persistent hemorrhagic areas. Therefore, both instrumentation techniques promoted similar pulp response, but different restoration procedures elicited significantly different responses of the dentinpulp complex.
|
394 |
Optical, structural, and transport properties of InN, In[subscript]xGa[subscript]1-xN alloys grown by metalorganic chemical vapor depositionKhan, Neelam January 1900 (has links)
Doctor of Philosophy / Department of Physics / Hongxing Jiang / InGaN based, blue and green light emitting diodes (LEDs) have been successfully
produced over the past decade. But the progress of these LEDs is often limited by the fundamental problems of InGaN such as differences in lattice constants, thermal
expansion coefficients and physical properties between InN and GaN. This difficulty could be addressed by studying pure InN and In[subscript]xGa[subscript]1-xN alloys.
In this context Ga-rich In[subscript]xGa[subscript]1-xN (x≤ 0.4) epilayers were grown by metal organic
chemical vapor deposition (MOCVD). X-ray diffraction (XRD) measurements showed
In[subscript]xGa[subscript]1-xN films with x= 0.37 had single phase. Phase separation occurred for x ~ 0.4. To understand the issue of phase separation in Ga-rich In[subscript]xGa[subscript]1-xN, studies on growth of pure InN and In-rich In[subscript]xGa[subscript]1-xN alloys were carried out.
InN and In-rich In[subscript]xGa[subscript]1-xN (x~0.97- 0.40) epilayers were grown on AlN/Al[subscript]2O[subscript]3 templates. A Hall mobility of 1400 cm[superscript]2/Vs with a carrier concentration of 7x1018cm[superscript]-3
was observed for InN epilayers grown on AlN templates. Photoluminescence (PL)emission spectra revealed a band to band emission peak at ~0.75 eV for InN. This peak shifted to 1.15 eV when In content was varied from 1.0 to 0.63 in In-rich In[subscript]xGa[subscript]1-xN
epilayers. After growth parameter optimization of In- rich In[subscript]xGa[subscript]1-xN alloys with (x= 0.97-0.40) were successfully grown without phase separation.
Effects of Mg doping on the PL properties of InN epilayers grown on GaN/Al[subscript]2O[subscript]3 templates were investigated. An emission line at ~ 0.76 eV, which was absent in undoped InN epilayers and was about 60 meV below the band edge emission peak at ~ 0.82 eV, was observed to be the dominant emission in Mg-doped InN epilayers. PL peak position and the temperature dependent emission intensity corroborated each other and suggested that Mg acceptor level in InN is about 60 meV above the valance band maximum.
Strain effects on the emission properties of InGaN/GaN multiple quantum wells
(MQWs) were studied using a single blue LED wafer possessing a continuous variation
in compressive strain. EL emission peak position of LEDs varies linearly with the biaxial strain; a coefficient of 19 meV/GPa, characterizes the relationship between the band gap energy and biaxial stress of In[subscript]0.2Ga[subscript]0.8N/GaN MQWs.
|
395 |
Integration of epitaxial SiGe(C) layers in advanced CMOS devicesHållstedt, Julius January 2007 (has links)
Heteroepitaxial SiGe(C) layers have attracted immense attention as a material for performance boost in state of the art electronic devices during recent years. Alloying silicon with germanium and carbon add exclusive opportunities for strain and bandgap engineering. This work presents details of epitaxial growth using chemical vapor deposition (CVD), material characterization and integration of SiGeC layers in MOS devices. Non-selective and selective epitaxial growth of Si1-x-yGexCy (0≤x≤0.30, 0≤y≤0.02) layers have been performed and optimized aimed for various metal oxide semiconductor field effect transistor (MOSFET) applications. A comprehensive experimental study was performed to investigate the growth of SiGeC layers. The incorporation of C into the SiGe matrix was shown to be strongly sensitive to the growth parameters. As a consequence, a much smaller epitaxial process window compared to SiGe epitaxy was obtained. Incorporation of high boron concentrations (up to 1×1021 atoms/cm3) in SiGe layers aimed for recessed and/or elevated source/drain (S/D) junctions in pMOSFETs was also studied. HCl was used as Si etchant in the CVD reactor to create the recesses which was followed (in a single run) by selective epitaxy of B-doped SiGe. The issue of pattern dependency behavior of selective epitaxial growth was studied in detail. It was shown that a complete removal of pattern dependency in selective SiGe growth using reduced pressure CVD is not likely. However, it was shown that the pattern dependency can be predicted since it is highly dependent on the local Si coverage of the substrate. The pattern dependency was most sensitive for Si coverage in the range 1-10%. In this range drastic changes in growth rate and composition was observed. The pattern dependency was explained by gas depletion inside the low velocity boundary layer. Ni silicide is commonly used to reduce access resistance in S/D and gate areas of MOSFET devices. Therefore, the effect of carbon and germanium on the formation of NiSiGe(C) was studied. An improved thermal stability of Ni silicide was obtained when C is present in the SiGe layer. Integration of SiGe(C) layers in various MOSFET devices was performed. In order to perform a relevant device research the dimensions of the investigated devices have to be in-line with the current technology nodes. A robust spacer gate technology was developed which enabled stable processing of transistors with gate lengths down to 45 nm. SiGe(C) channels in ultra thin body (UTB) silicon on insulator (SOI) MOSFETs, with excellent performance down to 100 nm gate length was demonstrated. The integration of C in the channel of a MOSFET is interesting for future generations of ultra scaled devices where issues such as short channel effects (SCE), temperature budget, dopant diffusion and mobility will be extremely critical. A clear performance enhancement was obtained for both SiGe and SiGeC channels, which point out the potential of SiGe or SiGeC materials for UTB SOI devices. Biaxially strained-Si (sSi) on SiGe virtual substrates (VS) as mobility boosters in nMOSFETs with gate length down to 80 nm was demonstrated. This concept was thoroughly investigated in terms of performance and leakage of the devices. In-situ doping of the relaxed SiGe was shown to be superior over implantation to suppress the junction leakage. A high channel doping could effectively suppress the source to drain leakage. / <p>QC 20100715</p>
|
396 |
HEAT TRANSFER AND CHEMICAL PROCESSES IN CHEMICAL VAPOR DEPOSITION REACTOR FOR SYNTHESIS OF CARBON NANOTUBESWasel, Wahed Rezk 01 January 2006 (has links)
A small-scale model of a CVD reactor was built. Axial and radial of major species concentrations and temperature profiles were obtained with a micro gas chromatograph and a fine thermocouple. Those temperature and species concentrations revealed detailed thermal and chemical structures of the CVD reactor.
The concentrations of argon plus hydrogen, methane, and C2Hx (C2H2 + C2H4 + C2H6) resulting from xylene decomposition were measured along the CVD at different temperatures. Ferrocene was added to xylene to investigate the effect of a catalyst on composition profiles. The results with ferrocene indicated an increase in CH4 and C2Hx concentrations. At 1000 C and above, the increase of C2Hx concentration is higher than that for CH4. The effect of ferrocene was very minor on the concentration of the gases. Finally composition and temperature profiles were measured and plotted for the radial direction at X=75 cm and T=1200 C.
The overall rate constant for the gas-phase reaction was calculated based on the measured species concentration data using the Benson and Shaw reaction mechanism. Our study showed that the Benson and Shaw mechanism could be used in the temperature range lower than 800 C.
Also the effect of hydrogen in the syntheses of CNTs, in the CVD reactor using xylene and ferrocene, was studied. Both single-step and two-step methods were applied. In the single-step method, the ferrocene was dissolved in the xylene. In the two step-method the catalyst preparation step was performed first; ferrocene powder was placed in the preheater for a certain period of time and carried by a mixture of argon and hydrogen at fixed concentration to get catalyst nanoparticles deposited on the reactor wall. Xylene then was injected to the reactor. To study the effect of hydrogen, the synthesized materials were observed by SEM and TEM. The results showed that the presence of hydrogen is essential for CNTs to be synthesized by the CVD method, and also the concentration of hydrogen in the reactor has a great effect on the quality of CNTs. The yield of CNTs in the two-step method was slightly higher than that in the one-step method.
|
397 |
Atomic layer deposition of nanolaminate Al₂O₃-Ta₂O₅ and ZnO-SnO₂ filmsSmith, Sean Weston 01 April 2011 (has links)
Thin films are an enabling technology for a wide range of applications, from microprocessors to diffusion barriers. Nanolaminate thin films combine two (or more) materials in a layered structure to achieve performance that neither film could provide on its own. Atomic layer deposition (ALD) is a chemical vapor deposition technique in which film growth occurs through self limiting surface reactions. The atomic scale control of ALD is well suited for producing nanolaminate thin films. In this thesis, ALD of two nanolaminate systems will be investigated: Al₂O₃-Ta₂O₅ and ZnO-SnO₂.
Al₂O₃ and Ta₂O₅ are high κ dielectrics that find application as gate oxides for field effect devices such as metal oxide semiconductor field effect transistors and thin film transistors. Al₂O₃-Ta₂O₅ nanolaminate films of a fixed composition and total thickness,
but with varied laminate structures, were produced to explore the influence of layer thickness on dielectric behavior. Layer thickness was found to have little impact on the dielectric constant but a strong impact on the leakage current. Thick layered nanolaminates (with 2.5 to 10 nm layers) performed better than either pure material. Showing structure provides a means of tailoring nanolaminate properties.
ZnSnO is an amorphous oxide semiconductor used to make transparent TFTs. Although ALD is naturally suited to the production of nanolaminates, the deposition of homogenous ternary compounds is still uncommon. For very thin depositions, nucleation behavior can dominate, resulting in ALD growth rates different than for thicker films. Initial work on ALD of the ZnO-SnO₂ system is presented, focusing on nucleation and growth of each material on the other. It was found that both ZnO and SnO₂ inhibit the growth of one another and a method was developed to characterize the average growth rate for few cycle depositions. / Graduation date: 2011
|
398 |
The electrical properties of thin hydrogenated amorphous carbon (a-C:H) insulating films on semiconductor and metal substratesMagill, Donna Patricia January 2000 (has links)
No description available.
|
399 |
Atmospheric pressure chemical vapour deposition of the nitrides and oxynitrides of vanadium, titanium and chromiumElwin, Gareth Steven January 1999 (has links)
No description available.
|
400 |
Structure of organic molecular thin films vapour deposited on III-V semiconductor surfacesCox, Jennifer Jane January 1999 (has links)
No description available.
|
Page generated in 0.1198 seconds