Spelling suggestions: "subject:"variété hyperkähleriennes"" "subject:"variété kählériennes""
1 |
Holomorphically symplectic varieties with Prym Lagrangian fibrations / Variétés holomorphiquement symplectiques avec des fibrations lagrangiennes de PrymMatteini, Tommaso 24 September 2014 (has links)
La thèse présente une construction de variétés holomorphiquement symplectiques singulières comme fibrations lagrangiennes. Celles-ci sont des variétés de Prym compactifiées relatives associées aux courbes sur des surfaces symplectiques avec une involution antisymplectique. Elles sont identifiées au lieu fixe d'une involution symplectique sur des espaces de modules de faisceaux de dimension 1. Un exemple explicite d'une variété symplectique irréductible de dimension 6 singulière et sans résolution symplectique est décrit pour une surface K3 qui est un revêtement double d'une surface cubique. Pour surfaces abéliennes, une variation de la construction est étudiée pour obtenir des variétés symplectiques irréductibles: variétés 0-Prym compactifiées relatives. Un résultat partiel est obtenu pour involutions sans points fixes: soit la variété 0-Prym est birationnelle à une variété symplectique irréductible de K3[n]-type, soit elle n'admet pas de résolutions symplectiques. / The thesis presents a construction of singular holomorphically symplectic varieties as Lagrangian fibrations. They are relative compactified Prym varieties associated to curves on symplectic surfaces with an antisymplectic involution. They are identified with the fixed locus of a symplectic involution on singular moduli spaces of sheaves of dimension 1. An explicit example, giving a singular irreducible symplectic 6-fold without symplectic resolutions, is described for a K3 surface which is the double cover of a cubic surface. In the case of abelian surfaces, a variation of this construction is studied to get irreducible symplectic varieties: relative compactified 0-Prym varieties. A partial classification result is obtained for involutions without fixed points: either the 0-Prym variety is birational to an irreducible symplectic variety of K3[n]-type, or it does not admit symplectic resolutions.
|
2 |
Sous-structures de Hodge, anneaux de Chow et action de certains automorphismesFu, Lie 03 October 2013 (has links) (PDF)
Cette thèse se compose de trois chapitres. Dans Chapitre 1, en supposant la conjecture standard de Lefschetz, on démontre la conjecture de Hodge généralisée pour une sous-structure de Hodge de convieau 1 qui est le noyau du cup-produit avec une classe de cohomologie grosse. Dans Chapitre 2, nous établissons une décomposition de la petite diagonale de X × X × X pour une intersection complète de type Calabi-Yau X dans un espace projectif. Comme une conséquence, on déduit une propriété de dégénérescence pour le produit d'intersection dans son anneau de Chow des deux cycles algébriques de dimensions complémentaires et strictement positives. Dans Chapitre 3, on démontre qu'un automorphisme symplectique polarisé de la variété des droites d'une hypersurface cubique de dimension 4 agit trivialement sur son groupe de Chow des 0-cycles, comme prédit par la conjecture de Bloch généralisée.
|
Page generated in 0.0625 seconds