• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 9
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 51
  • 51
  • 12
  • 12
  • 9
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

New approaches to variational principles and gauge theories in general relativity

Churchill, Lorne Winston 15 June 2018 (has links)
We develop new variational techniques, acting on classes of Lagrangians with the same functional dependence but arbitrary functional form, for the derivation of general, strongly conserved quantities, supplementing the usual procedure for deriving weak conservation laws via Noether's theorem. Using these new techniques we generate and generalize virtually all energy-momentum complexes currently known. In the process we discover and understand the reason for the difficulties associated with energy-momentum complexes in general relativity. We study a Palatini variation of a novel Lagrangian due to Nissani. We find that Nissani's principal claim, that his Lagrangian specifies Riemannian geometry in the presence of a generalized matter tensor, is not in fact justifiable, and prove that his Lagrangian is not unique. We speculate on the possibility of deriving a general-relativistic analog of Maxwell's current equation, a matter current equation, yielding an entirely new approach to the idea of energy-momentum in general relativity. We develop the SL(2,C) x U(1) spinor formalism naturally combining the gravitational and electromagnetic potentials in a single object--the spinor connection. Variably charged matter is rigourously introduced, through the use of spin densities, in the unified potential theories we develop. We generate both the Einstein-Maxwell equations and new equations. The latter generalize both the Maxwell equation and the Einstein equation which includes a new "gravitational stress-energy tensor". This new tensor exactly mimicks the electromagnetic stress-energy tensor with Riemann tensor contractions replacing Maxwell tensor contractions. We briefly consider the introduction of matter. A Lagrangian generalizing the two spinor Dirac equations has no gravitational currents and the electromagnetic currents must be on the light cone. A Lagrangian generalizing the Pauli equations has both gravitational and electromagnetic currents. The equations of both Lagrangians demonstrate beautifully how the divergence of the total stress-energy tensor vanishes in this formalism. In the theory of the generalized Einstein-Maxwell and Pauli equations we succeed in deriving an equation describing a generalized matter-charge current density. / Graduate
32

Estudo sobre a teoria de vínculos de Hamilton-Jacobi /

Maia, N. T., (Natália Tenório) January 2013 (has links)
Orientador: Bruto Max Pimentel Escobar / Co-orientador: / Banca:Andrey Yuryevich Mikhaylov / Banca: Edmundo Capelas de Oliveira / Resumo: A teoria de Hamilton-Jacobi geralmente é apresentada como uma extensão da teoria de Hamilton através das transformações canônicas. No entanto, o matemático Constantin Carathéodory mostrou que essa teoria, sua existência e validade, independem do formalismo hamiltoniano. Neste trabalho, apresentaremos a abordagem de Carathéodory para a teoria de Hamilton-Jacobi. Partindo desse procedimento, construiremos uma teoria de vínculos para que se possa resolver problemas com vínculos involutivos e não-involutivos. Para isso, analisaremos a integrabilidade das equações e introduziremos a operação dos parênteses generalizados que, no lugar do parênteses de Poisson, passará a descrever a dinâmica de sistemas vinculados. Mostraremos uma aplicação dessa teoria de vínculos no modelo BF da teoria de campos. Para finalizar, trataremos da Termodinâmica Axiomática de Carathéodory e também da teoria de Hamilton-Jacobi na Termodinâmica, o que é válido para ilustrar a grande abrangência desse formalismo / Abstract: The Hamilton-Jacobi theory is usually presented as an extension of the Hamilton's theory through the canonical transformations. However, the mathematician Constantin Carathéodory showed this theory, its existence and validity, is independent of the Hamiltonian formalism. In this work, we present the Caratheodory's approach to the Hamilton-Jacobi theory. From this procedure, we build a theory of constraints which can solve problems with involutive and non-involutive constraints. For this, we analyze the integrability of the equations and introduce the operation of the generalized brackets that, instead of Poisson brackets, will describe the dynamics of constrained systems. We show an application of this theory in BF model of the field theory. Finally, we will discuss the Carathéodory's Axiomatic Thermodynamics and also show the Hamilton-Jacobi theory in Thermodynamics, which is valid to illustrate the wide coverage of this formalism / Mestre
33

Estudo sobre a teoria de vínculos de Hamilton-Jacobi

Maia, Natália Tenório [UNESP] 07 March 2013 (has links) (PDF)
Made available in DSpace on 2015-12-10T14:23:02Z (GMT). No. of bitstreams: 0 Previous issue date: 2013-03-07. Added 1 bitstream(s) on 2015-12-10T14:27:52Z : No. of bitstreams: 1 000852795.pdf: 576204 bytes, checksum: 28ede436e9367885bc3b672b1903caad (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / A teoria de Hamilton-Jacobi geralmente é apresentada como uma extensão da teoria de Hamilton através das transformações canônicas. No entanto, o matemático Constantin Carathéodory mostrou que essa teoria, sua existência e validade, independem do formalismo hamiltoniano. Neste trabalho, apresentaremos a abordagem de Carathéodory para a teoria de Hamilton-Jacobi. Partindo desse procedimento, construiremos uma teoria de vínculos para que se possa resolver problemas com vínculos involutivos e não-involutivos. Para isso, analisaremos a integrabilidade das equações e introduziremos a operação dos parênteses generalizados que, no lugar do parênteses de Poisson, passará a descrever a dinâmica de sistemas vinculados. Mostraremos uma aplicação dessa teoria de vínculos no modelo BF da teoria de campos. Para finalizar, trataremos da Termodinâmica Axiomática de Carathéodory e também da teoria de Hamilton-Jacobi na Termodinâmica, o que é válido para ilustrar a grande abrangência desse formalismo / The Hamilton-Jacobi theory is usually presented as an extension of the Hamilton's theory through the canonical transformations. However, the mathematician Constantin Carathéodory showed this theory, its existence and validity, is independent of the Hamiltonian formalism. In this work, we present the Caratheodory's approach to the Hamilton-Jacobi theory. From this procedure, we build a theory of constraints which can solve problems with involutive and non-involutive constraints. For this, we analyze the integrability of the equations and introduce the operation of the generalized brackets that, instead of Poisson brackets, will describe the dynamics of constrained systems. We show an application of this theory in BF model of the field theory. Finally, we will discuss the Carathéodory's Axiomatic Thermodynamics and also show the Hamilton-Jacobi theory in Thermodynamics, which is valid to illustrate the wide coverage of this formalism / CNPq: 133488/2011-0
34

Estudo clássico completo do formalismo de Hamilton-Jacobi

Valcárcel Flores, Carlos Enrique [UNESP] 17 August 2012 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:32:10Z (GMT). No. of bitstreams: 0 Previous issue date: 2012-08-17Bitstream added on 2014-06-13T20:27:17Z : No. of bitstreams: 1 valcarcelflores_ce_dr_ift.pdf: 694272 bytes, checksum: e1b097c2bc884f3cf2ae38593c38d4ba (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Nesta tese, apresentamos a formulação clássica completa da teoria de Hamilton-Jacobi para sistemas vinculados. Usando o método de Lagrangianas Equivalentes de Carathéodory obtemos um conjunto de Equações Diferenciais Parciais de Hamilton-Jacobi, também chamado de Hamiltonianos. A Condição de Integrabilidade nos permite dividir os Hamiltonianos entre involutivos e não-involutivos. Construímos os Parênteses Generalizados a fim de eliminar os Hamiltonianos não-involutivos, enquanto que relacionamos os Hamiltonianos involutivos com o Gerador das transformações canônicas. Por outro lado, a Equação de Lie é resultado da realização das variações totais no funciona lde ação, e que é relacionada às simetrias da teoria. Usamos a Equação de Lie e a estrutura das Equaçõoes Características, que indicam a evolução dinâmica do sistemas, para associar o Gerador de transformações canônicas às simetrias de calibre. Aplicamos o formalismo de Hamilton-Jacobi ao modelo da Mecânica Quântica Topologica, ao modelo BF bi-dimensional equivalente à Teoria de Jackiw-Teitelboim, ao campo de Yang-Mills Topologicamente Massivo e seu equivalente Auto-dual, assim como para o campo da Gravitação linearizada / It is presented the complete classical formulation of the Hamilton-Jacobi theory for constrained systems. From fixed point variations and using the Carathéodory’s method of Equivalent Lagrangian we obtain a set of Hamilton-Jacobi Partial Differential Equations, also called Hamiltonians. The Integrability Condition allow us to divide the Hamiltonians between involutive and non-involutive ones. We build the Generalized Brackets in order to eliminate the non-involutive Hamiltonians, whereas we relate the involutive Hamiltonians to the Generator of Canonical Transformations. On the other hand, we build the Lie Equation, result of perform total variations to the action functional and which is related to the symmetries of the theory. We use the Lie equation along with the structure of the Characteristic Equations, related to the dynamical evolution of the systems, to associate the Generator of Canonical Transformation to Gaugesymmetries. We apply this formalism to the Topologically Quantum Mechanics, the two dimensional BF model equivalent to the Jackiw-Teitelboim theory, the Topologically Massive Yang-Mills field as well as its correspondent self-dual and to the Linearized Gravity field
35

Estudo clássico completo do formalismo de Hamilton-Jacobi /

Valcárcel Flores, Carlos Enrique. January 2012 (has links)
Orientador: Bruto Max Pimentel Escobar / Banca: Abraham Zimerman / Banca: Denis Dalmazi / Banca: Ion Vasile Vancea / Banca: Vladislav Kupriyanov / Resumo: Nesta tese, apresentamos a formulação clássica completa da teoria de Hamilton-Jacobi para sistemas vinculados. Usando o método de Lagrangianas Equivalentes de Carathéodory obtemos um conjunto de Equações Diferenciais Parciais de Hamilton-Jacobi, também chamado de Hamiltonianos. A Condição de Integrabilidade nos permite dividir os Hamiltonianos entre involutivos e não-involutivos. Construímos os Parênteses Generalizados a fim de eliminar os Hamiltonianos não-involutivos, enquanto que relacionamos os Hamiltonianos involutivos com o Gerador das transformações canônicas. Por outro lado, a Equação de Lie é resultado da realização das variações totais no funciona lde ação, e que é relacionada às simetrias da teoria. Usamos a Equação de Lie e a estrutura das Equaçõoes Características, que indicam a evolução dinâmica do sistemas, para associar o Gerador de transformações canônicas às simetrias de calibre. Aplicamos o formalismo de Hamilton-Jacobi ao modelo da Mecânica Quântica Topologica, ao modelo BF bi-dimensional equivalente à Teoria de Jackiw-Teitelboim, ao campo de Yang-Mills Topologicamente Massivo e seu equivalente Auto-dual, assim como para o campo da Gravitação linearizada / Abstract: It is presented the complete classical formulation of the Hamilton-Jacobi theory for constrained systems. From fixed point variations and using the Carathéodory's method of Equivalent Lagrangian we obtain a set of Hamilton-Jacobi Partial Differential Equations, also called Hamiltonians. The Integrability Condition allow us to divide the Hamiltonians between involutive and non-involutive ones. We build the Generalized Brackets in order to eliminate the non-involutive Hamiltonians, whereas we relate the involutive Hamiltonians to the Generator of Canonical Transformations. On the other hand, we build the Lie Equation, result of perform total variations to the action functional and which is related to the symmetries of the theory. We use the Lie equation along with the structure of the Characteristic Equations, related to the dynamical evolution of the systems, to associate the Generator of Canonical Transformation to Gaugesymmetries. We apply this formalism to the Topologically Quantum Mechanics, the two dimensional BF model equivalent to the Jackiw-Teitelboim theory, the Topologically Massive Yang-Mills field as well as its correspondent self-dual and to the Linearized Gravity field / Doutor
36

Variational Principles of Fluid Mechanics and Electromagnetism: Imposition and Neglect of the Lin Constraint

Allen, Ross Roundy, Jr. 01 May 1987 (has links)
Variational principles in classical fluid mechanics and electromagnetism have sprinkled the literature since the eighteenth century. Even so, no adequate variational principle in the Eulerian description of matter was had until 1968 when an Eulerian variational principle was introduced which reproduces Euler's equation of fluid dynamics. Although it successfully produces the appropriate equation of motion for a perfect fluid, the variational principle requires imposition of a constraint which was not fully understood at the time the variational principle was introduced. That constraint is the Lin constraint. The Lin constraint has subsequently been utilized by a number of authors who have sought to develop Eulerian variational principles in both fluid mechanics and electromagnetics (or plasmadynamics). How-ever, few have sought to fully understand the constraint. This dissertation first reviews the work of earlier authors concerning the development of variational principles in both the Eulerian and Lagrangian nomenclatures. In the process, it is shown rigorously whether or not the Euler-Lagrange equations which result from the variational principles are equivalent to the generally accepted equations of motion. In particular, it is shown in the case of several Eulerian variational principles that imposition of the Lin constraint results in Euler-Lagrange equations which are equivalent to the generally accepted equations of motion. On the other hand, it is shown that neglect of the Lin constraint results in Euler-Lagrange equations restrictive of the generally accepted equations of motion. In an effort to improve the physical motivation behind introduction of the Lin constraint a new variational constraint is developed based on the concept of surface forces within a fluid. The new constraint has the advantage of producing Euler-Lagrange equations which are globally correct whereas the Lin constraint itself allows only local equivalence to the standard classical equations of fluid motion. Several additional items of interest regarding variational principles are presented. It is shown that a quantity often referred to as "the canonical momentum" of a charged fluid is not always a constant of the motion of the fluid. This corrects an error which has previously appeared in the literature. In addition, it is demonstrated that there does not exist an unconstrained Eulerian variational principle giving rise to the generally accepted equations of motion for both a perfect fluid and a cold, electromagnetic fluid.
37

Effects of the variation of fundamental constants in atoms

Angstmann, Elizabeth, Physics, Faculty of Science, UNSW January 2007 (has links)
Interest in the variation of fundamental constants has recently been stimulated by claims that the fine structure constant, α, was smaller in the past. Physicists are investigating whether α is currently varying using a number of methods including atomic clock experiments and quasar absorption spectra. To date atomic clock experiments have not reached the same level of precision as the quasar results but the precision to which transition frequencies are being measured is increasing dramatically and very soon atomic clock experiments based on Earth will be able to rival or surpass the quasar results. In order to relate the change in transition frequencies to a variation of α accurate calculations of relativistic effects in atoms and their dependence upon α are needed. Other effects, such as the small shift of transition frequencies due to blackbody radiation also need to be accounted for. In this thesis we perform accurate calculations of the dependence of transition frequencies in two-valence-electron atoms and ions on a variation of α. The relativistic Hartree-Fock method is used with many-body perturbation theory and configuration interaction methods to calculate transition frequencies. We also consider transitions with an enhanced sensitivity to α variation. In particular, narrow lines that correspond to atomic transitions between close lying, long-lived atomic states of different configurations. The small transition frequency, coupled with differences in the electron structure ensures a strong enhancement of the relative frequency change compared to a possible change in α . We also show that using the modified form of the Dirac Hamiltonian, as suggested by Bekenstein, does not affect the analysis of the quasar data pertaining to a measurement of α variation, nor does it affect atomic clock experiments. Finally we have performed calculations of the size of the frequency shift induced by a static electric field on the clock transition frequencies of the hyperfine splitting in Y b+, Rb, Cs, Ba+, and Hg+. The calculations are used to find the frequency shifts due to blackbody radiation which are needed for accurate frequency measurements and improvements of the limits on variation of α. Our result for Cs [??v/=E2 = -2:26(2) x 10-10Hz/(V/m)2] is in good agreement with early measurements and ab initio calculations. We present arguments against recent claims that the actual value might be smaller. The difference (~ 10%) is due to the continuum spectrum in the sum over intermediate states.
38

Computing Visible-Surface Representations

Terzopoulos, Demetri 01 March 1985 (has links)
The low-level interpretation of images provides constraints on 3D surface shape at multiple resolutions, but typically only at scattered locations over the visual field. Subsequent visual processing can be facilitated substantially if the scattered shape constraints are immediately transformed into visible-surface representations that unambiguously specify surface shape at every image point. The required transformation is shown to lead to an ill-posed surface reconstruction problem. A well-posed variational principle formulation is obtained by invoking 'controlled continuity,' a physically nonrestrictive (generic) assumption about surfaces which is nonetheless strong enough to guarantee unique solutions. The variational principle, which admits an appealing physical interpretation, is locally discretized by applying the finite element method to a piecewise, finite element representation of surfaces. This forms the mathematical basis of a unified and general framework for computing visible-surface representations. The computational framework unifies formal solutions to the key problems of (i) integrating multiscale constraints on surface depth and orientation from multiple visual sources, (ii) interpolating these scattered constraints into dense, piecewise smooth surfaces, (iii) discovering surface depth and orientation discontinuities and allowing them to restrict interpolation appropriately, and (iv) overcoming the immense computational burden of fine resolution surface reconstruction. An efficient surface reconstruction algorithm is developed. It exploits multiresolution hierarchies of cooperative relaxation processes and is suitable for implementation on massively parallel networks of simple, locally interconnected processors. The algorithm is evaluated empirically in a diversity of applications.
39

Statistical energy analysis and variational principles for the prediction of sound transmission in multilayered structures

Barbagallo, Mathias January 2013 (has links)
Multilayered structures have many application in industry and society: they have peculiar properties and serve a variety of purposes, like structural support, thermal insulation, vibrational and acoustic isolation. This thesis concerns the prediction of sound transmission in multilayered structures. Two problems are herein investigated: the transmission of energy through structures and the transmission of energy along structures. The focus of the analysis is on the mid to high frequency range. To predict sound transmission in these structures, statistical energy analysis (SEA) is used.SEA models are devised for the prediction of the sound reduction index for two kinds of multilayered structures, double-walls used in buildings and trim-panels in vehicles; the double-walls comprise an air cavity in between flat plasterboard or glass plates, whereas the trim-panels a porous layer in between curved aluminium and rubber layers. The SEA models are based upon the wave-types carrying energy. The novelty in these SEAs is an element describing the waves in the air cavity, or in the porous layer, fully coupled to the mass-impeded external layers. Compared to measurements, the proposed SEA performs well: for double-walls, it performs better than previous models; for trim-panels, it is an original result. The parameters of the new SEA element, such as modal density, are derived from the coupling equations describing the fully coupled waves. For double-walls, these equations are derived via Newton's laws. For trim-panels, a variational approach based upon a modified Hamilton's principle valid for non-conservative systems is preferred, because it is a powerful machinery for deriving equations of motion and coupling conditions of a medium as complex as the porous layer. The modified Hamilton's principle for non-conservative systems is based upon a self-adjoint functional analogous to the Lagrangian, inspired by Morse and Feshbach's construction. A self-adjoint variational principle for Biot's equations in the displacement formulation is devised. An equivalent mixed formulation is obtained changing the coordinates of the displacement formulation via Lagrange multipliers. From this mixed formulation, the Lagrangian for a porous material with a limp frame is derived, which yields the continuity of the total displacement of the porous layer. Lagrange multipliers help to obtain the correct coupling functionals between a porous material and a solid. The Lagrange multipliers introducing the continuity of the frame and the solid displacements equal the traction of the in-vacuo frame, thus disappearing if the latter is limp. Measurements to gather material parameters for a Biot model of the porous layer have been conducted.The effects of spatial energy decay in the transmission along structures predicted by SEA is studied: a major effect is the increased relevance of indirect coupling loss factors between SEA elements. This may jeopardize the usefulness of SEA at higher frequencies. / <p>QC 20130218</p>
40

Effects of the variation of fundamental constants in atoms

Angstmann, Elizabeth, Physics, Faculty of Science, UNSW January 2007 (has links)
Interest in the variation of fundamental constants has recently been stimulated by claims that the fine structure constant, α, was smaller in the past. Physicists are investigating whether α is currently varying using a number of methods including atomic clock experiments and quasar absorption spectra. To date atomic clock experiments have not reached the same level of precision as the quasar results but the precision to which transition frequencies are being measured is increasing dramatically and very soon atomic clock experiments based on Earth will be able to rival or surpass the quasar results. In order to relate the change in transition frequencies to a variation of α accurate calculations of relativistic effects in atoms and their dependence upon α are needed. Other effects, such as the small shift of transition frequencies due to blackbody radiation also need to be accounted for. In this thesis we perform accurate calculations of the dependence of transition frequencies in two-valence-electron atoms and ions on a variation of α. The relativistic Hartree-Fock method is used with many-body perturbation theory and configuration interaction methods to calculate transition frequencies. We also consider transitions with an enhanced sensitivity to α variation. In particular, narrow lines that correspond to atomic transitions between close lying, long-lived atomic states of different configurations. The small transition frequency, coupled with differences in the electron structure ensures a strong enhancement of the relative frequency change compared to a possible change in α . We also show that using the modified form of the Dirac Hamiltonian, as suggested by Bekenstein, does not affect the analysis of the quasar data pertaining to a measurement of α variation, nor does it affect atomic clock experiments. Finally we have performed calculations of the size of the frequency shift induced by a static electric field on the clock transition frequencies of the hyperfine splitting in Y b+, Rb, Cs, Ba+, and Hg+. The calculations are used to find the frequency shifts due to blackbody radiation which are needed for accurate frequency measurements and improvements of the limits on variation of α. Our result for Cs [??v/=E2 = -2:26(2) x 10-10Hz/(V/m)2] is in good agreement with early measurements and ab initio calculations. We present arguments against recent claims that the actual value might be smaller. The difference (~ 10%) is due to the continuum spectrum in the sum over intermediate states.

Page generated in 0.1673 seconds