31 |
Microvascular Architecture of the Elastase Emphysemic Hamster LungHossler, Fred E., Douglas, John E., Verghese, Abraham, Neal, Larry 01 January 1991 (has links)
Vascular corrosion casts of normal and elastaseinduced emphysemic hamster lungs, prepared with a low viscosity resin mixture consisting of Mercox and Sevriton, were observed by scanning electron microscopy. Casts were quantitated by measuring vascular volume or determining nonalveolar air space using confocal laser scanning microscopy. Normal lung casts were characterized by wellorganized fields of alveoli (about 70m in diameter) connected by distinct alveolar ducts. Emphysemic lung casts exhibited numerous bullae (often as large as 0.5 mm in diameter). The vasculature of the bullae indicated that they were formed by destruction of alveolar walls and subsequent coalescence of numerous alveolae. Remnants of alveolar walls, consisting of shallow ridges of capillaries, lined the bases of the bullae. Vascular volumes expressed as cast volume/total tissue volume were calculated at 20% and 12% for uninflated and inflated lungs, respectively, for both control and emphysemic lungs. Four months after elastase instillation, nonalveolar air space of the emphysemic lungs was increased by 73% over controls. These observations indicate that elastase emphysema results, initially, in remodeling of the alveolar structure (bullae formation) and loss of surface area for gas exchange, rather than from extensive loss of vasculature. Vascular corrosion casting is a useful technique for monitoring emphysema both morphologically and quantitatively.
|
32 |
Vascular branching point counts using photoacoustic imaging in the superficial layer of the breast: A potential biomarker for breast cancer / 光音響イメージングを用いた乳房表層における血管分岐点計測は乳癌におけるバイオマーカーとなる可能性があるYamaga, Iku 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第21684号 / 医博第4490号 / 新制||医||1036(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 松田 道行, 教授 松田 秀一, 教授 椛島 健治 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
33 |
Scalable Human Intestine Model with Accessible Lumen and Perfusable Branched VasculatureHayward, Kristen January 2021 (has links)
Two-dimensional cell culture and animal models inadequately represent human pharmacokinetics and diseases like inflammatory bowel disease and colorectal cancer. This means missed diagnostic and therapeutic opportunities, high drug attrition rates, and a portfolio of approved drugs that underdeliver the desired benefits to patient outcomes. This encourages the development of a more physiologically relevant intestine model. The objective of this work was to develop a 384-well plate organ-on-a-chip platform, IFlowPlateTM, that can accommodate up to 128 human intestine models with accessible lumens and perfusable branched vasculature in an ECM environment. Fibrin-Matrigel® was used a structurally supportive and biologically instructive substrate that enabled: (1) prolonged cell culture (at least 15 days) with routine refreshment of aprotinin-supplemented medium, (2) formation of a confluent Caco-2 monolayer with barrier function, and (3) de novo assembly of a vascular network with barrier function. A fluorescent dextran permeability assay was used for in situ real-time measurements of epithelial barrier function in a high-throughput manner. Mixed co-culture of endothelial cells and fibroblasts in fibrin-Matrigel® resulted in the formation of an interconnected network of patent vessels that retained an albumin surrogate tracer within the luminal space indicating endothelial barrier function. To improve the success rate of anastomoses between living vessels and fluidic channels, the modification of inherently hydrophobic PDMS and polystyrene culture surfaces with ECM protein was explored. To address the limitations of a cancer cell line-derived intestine model, the replacement of Caco-2 cells with biopsied-derived colon organoid cells was investigated. Different gel formulations were assessed for their ability to induce colon organoid fragments to form monolayers. Finally, the incorporation of multiscale intestinal topography and luminal flow was considered through a modified approach to plate fabrication, whereby moulded alginate is embedded in ECM and sacrificed to generate a scaffold. Work to make the moulded alginate more robust is presented. / Thesis / Master of Applied Science (MASc) / Two-dimensional cell culture and animal models inadequately represent human drug metabolism and diseases like inflammatory bowel disease and colorectal cancer. The objective of this work is to develop a more physiologically relevant human intestine model. Using fabrication techniques pioneered by the semiconductor industry, a custom organ-on- a-chip platform in the format of a 384-well plate was developed. This platform is compatible with standard laboratory equipment and practices and can accommodate up to 128 human intestine models comprised of the intestinal epithelium and associated network of blood vessels. In this platform, the cells of the intestinal epithelium and vasculature are supported by a network of natural proteins. This allows processes like vessel growth to be modelled in this platform. Vessel growth plays a key role in the progression of inflammatory bowel disease and cancer, and this model could help scientists better understand these diseases.
|
34 |
Examining location-specific invasive patterns: linking interstitial fluid and vasculature in glioblastomaEsparza, Cora Marie 14 May 2024 (has links)
Glioblastoma is the most common and deadly primary brain tumor with an average survival of 15 months following diagnosis. Characterized as highly infiltrative with diffuse tumor margins, complete resection and annihilation of tumor cells is impossible following current standard of care therapies. Thus, tumor recurrence is inevitable. Interstitial fluid surrounds all of the cells in the body and has been linked to elevated invasion in glioma, which highlights the importance of this understudied fluid compartment in the brain. The primary objective of this dissertation was to identify specific interstitial fluid transport behaviors associated with elevated invasion surrounding glioma tumors. We first describe our methods to measure interstitial fluid flow in the brain using dynamic contrast enhanced magnetic resonance imaging (DCE-MRI), a clinically used, non-invasive imaging modality. We highlight the versatility of the technique and the possibilities that could arise from widespread adoption into existing perfusion-based imaging protocols. Using this method, we examined transport associated with invasion in a murine GL261 cell line. We found that elevated interstitial fluid velocity magnitudes, decreased diffusion coefficients and regions with accumulating flow were significantly associated with invasion. We tested the validity of our invasive trends by extending our analysis to multiple, clinically-relevant tumor locations in the brain. Interestingly, we found invasion did not follow the same trends across brain regions indicating location-specific structures may drive both interstitial flow and corresponding invasion heterogeneities. Lastly, we aimed to manipulate flow by engaging with the meningeal lymphatics, an established pathway for interstitial fluid drainage. Over-expression of VEGF-C in the tumor microenvironment neither enhanced drainage nor altered invasion in comparison to our control, indicating other tumor-secreted growth factors, such as VEGF-A, may play a larger role in mediating flow and invasion. Taken together, by identifying specific transport factors associated with invasion, we may be better equipped to target and treat infiltrative tumor margins, ultimately extending survival in patients diagnosed with this devastating disease. / Doctor of Philosophy / Glioblastoma is the most common and deadly primary brain tumor with an average survival of 15 months following diagnosis. Characterized as highly infiltrative with diffuse tumor margins, complete resection and annihilation of tumor cells is impossible following current standard of care therapies. Thus, tumor recurrence is inevitable. Interstitial fluid surrounds all of the cells in the body and has been linked to elevated invasion in glioma, which highlights the importance of this understudied fluid compartment in the brain. The primary objective of this dissertation was to identify specific interstitial fluid transport behaviors associated with elevated invasion surrounding glioma tumors. We first describe our methods to measure interstitial fluid flow in the brain using dynamic contrast enhanced magnetic resonance imaging (DCE-MRI), a clinically used, non-invasive imaging modality. We highlight the versatility of the technique and the possibilities that could arise from widespread adoption into existing imaging projects. Using this method, we examined transport associated with cancer cell invasion in a mouse tumor cell line. We found that interstitial fluid speeds were elevated while diffusion was decreased in regions of invasion. Further, regions that had interstitial fluid flow congregation were significantly associated with invasion. We tested the validity of these invasive trends by extending our analysis to multiple, clinically-relevant tumor locations in the brain. Interestingly, we found invasion did not follow the same trends across brain regions, indicating location-specific structures may drive both interstitial flow and invasion differences. Lastly, we aimed to manipulate flow by engaging with the meningeal lymphatics, an established pathway for interstitial fluid drainage. Following administration of a meningeal lymphatic-relevant protein, we saw no changes in flow or invasion in comparison to our untreated control, indicating other tumor-secreted proteins may play a larger role in these responses. Taken together, by identifying specific transport factors associated with invasion, we may be better equipped to target and treat infiltrative tumor margins, ultimately extending survival in patients diagnosed with this devastating disease.
|
35 |
Effects of Elevated Intracranial Pressure on a Cerebral Vein ModelDavis, Nathaniel Tran 03 September 2024 (has links)
Nonfatal strangulation (NFS) can cause severe physical and psychological injury. Instances of NFS are correlated with a heightened risk of lethal violence between partners [1]. While NFS does not result in death, it can result in severe hypoxic brain injury (HBI) and has been shown to increase the likelihood of an eventual fatality in the relationship eightfold [1]. Unfortunately, minimal quantitative biomechanical research has been performed to study strangulation injury, and detection and diagnosis of NFS, which often relies upon visible injuries, remains challenging [2]. The effects of occluded cerebral venous flow on intracranial pressure (ICP) have not been considered in a model for HBI as opposed to the context of stroke and neonatal hypoxic-ischemic encephalopathy.
In this project, the effects of elevated ICP on the hemodynamics and structural dynamics of a diploic vein were considered. This was done by performing transient coupled fluid-structure simulations on a segment of an intracranial vein that sought to replicate the ICP surge experienced during strangulation. The vessel model was created by isolating a segment of an intracranial vessel. Using the software 3D Slicer, the skull was extracted and exported as an STL file. From there, a segment of a diploic vein was isolated and edited by importing the STL into Blender. The segment was then processed using MeshLab and Blender to make it a solid geometry and remove potential complications.
Once the vessel segment was isolated and processed, it was exported as an STL file into a commercial solver from ANSYS, Inc., Canonsburg, PA, USA. Using a coupling system of the Ansys Fluent and Mechanical models, a transient Fluid-Solid Interaction (FSI) simulation was performed by coupling ANSYS' Fluent and Mechanical models. In the simulation, blood flowed steadily through the vessel, and the data for FSI was recorded. The software was used to simulate the deformation and stress of the blood vessels caused by the blood flow for elevated intracranial pressure events for five different durations and magnitudes.
Following the FSI simulations, the total deformation, equivalent stress, dynamic pressure, static pressure, and fluid velocity were plotted. The results show that altering the pressure duration can increase average total vessel wall deformation by up to 356.35%, average equivalent stress by 331.11%, dynamic pressure by 19.28%, and decrease static pressure by 30.94%. Likewise, increasing the magnitude of pressure can also increase the dynamic pressure by 17.17 %, the maximum velocity by 16.77%, and can decrease the static pressure by 27.31%. The statistical behavior of each type of modification was unique, as altering the duration created a logarithmic plot while changing the magnitude of pressure created a second power plot. With the provided data, researchers will better understand the effects of NFS-like elevated intracranial pressure on cerebral vasculature. / Master of Science / Nonfatal strangulation (NFS) has been identified as a leading indicator of escalating partner violence. The first occurrence of NFS in an intimate partnership correlated with an 8-fold increase in the risk of future attacks that are fatal by that partner. While NFS does not result in the immediate death of the victim, it can still cause severe physical and psychological harm. This includes traumatic brain injury from lack of proper blood flow, increased intracranial pressure (ICP), and hypoxia. Quantitative research on strangulation injury has mainly been carried out by forensics researchers, resulting in a lack of understanding of the biomechanics of nonfatal strangulation. This lack of knowledge, coupled with the frequent absence of visible injuries in victims of NFS, makes diagnosing NFS events particularly difficult. This study aims to begin to fill this gap by developing a computational biomechanics model of a phenomenon that occurs during NFS. The model examines how altering the duration and magnitude of a pressure wave that mimics the increased intracranial pressure during NFS can impact the blood flow and vessel motions in an intracranial blood vessel. The blood vessel model was extracted from a computed tomography (CT) scan of a patient's skull, preprocessed, and transferred into ANSYS finite element modeling software. Fluid-solid interaction (FSI) simulations were performed in ANSYS, which allowed the study of blood pressure, blood velocity, vessel deformation, and vessel stress. The results showed that increasing either the magnitude or duration of the pressure wave caused an increase in vessel stress and deformation. The results also showed that doing either increased the maximum blood velocity and dynamic pressure while decreasing the static pressure of the blood. These results contribute toward the understanding of the biomechanics of nonfatal strangulation. The model developed in this project may serve as the foundation for more complex models in future studies.
|
36 |
Targeting the TGF-β signaling pathway for resolution of pulmonary arterial hypertensionSharmin, Nahid, Nganwuchu, Chinyere C., Nasim, Md. Talat 23 May 2021 (has links)
Yes / Aberrant transforming growth factor-β (TGF-β) signaling activation is linked to pulmonary arterial hypertension (PAH). BMPR2 mutations perturb the balance between bone morphogenetic protein (BMP) and TGF-β pathways, leading to vascular remodeling, narrowing of the lumen of pulmonary vasculature, and clinical symptoms. This forum highlights the association of the TGF-β pathway with pathogenesis and therapeutic approaches. / Research carried out at Nasim laboratories is funded by GrowMedtech, the Royal Society, the Commonwealth Scholarship Commission (CSC) and the University of Bradford (UoB). N.S. is funded by the CSC and C.C.N. is partly funded by the UoB.
|
37 |
Photoreceptor transplantation and characterization of vascular changes in canine inherited retinal degenerationsRipolles-Garcia, Ana 13 January 2023 (has links)
Los fotorreceptores de los mamíferos, las células externas de la retina que detectan la luz, carecen de capacidad de autorregeneración tras una lesión. En los estadios avanzados de las IRD, los fotorreceptores se pierden pero la estructura interna de la retina se conserva durante largos periodos de tiempo, aunque con una importante remodelación sináptica y gliosis. Para estas condiciones, las terapias regenerativas dirigidas a reemplazar los fotorreceptores y establecer sinapsis funcionales con las neuronas internas de la retina viables restantes podrían permitir la recuperación de la visión en pacientes que de otro modo serían ciegos. En otras palabras, la terapia con células madre está dirigida al tratamiento de las degeneraciones de la retina en aquellas situaciones en las que se han perdido los fotorreceptores y, por lo tanto, no es posible restaurar la funcionalidad a través de enfoques más comunes como la terapia de reemplazo de genes. Se han desarrollado y caracterizado células madre embrionarias humanas (hESC) o células madre pluripotentes inducidas (iPSC) derivadas de células precursoras de fotorreceptores (PRPC) contenidas en organoides de retina (RO) para terapias experimentales regenerativas. Aunque la terapia con células madre es un campo que ha mostrado resultados prometedores en animales de laboratorio, no hay informes que evalúen la seguridad y eficacia de su uso en perros. Con un inyector subretiniano que fue modificado para acomodar el gran tamaño de los agregados celulares, inyectamos con éxito las células en el espacio subretiniano (SRS) canino utilizando un procedimiento quirúrgico sencillo (inyección manual en bolo sin vitrectomía previa). Pudimos monitorizar la supervivencia y las características de las células injertadas a lo largo del tiempo utilizando un enfoque de imagen multimodal que incluía la detección mediante fotografía del fondo de ojo y/o cSLO de los genes reporteros fluorescentes (tdTomato o GFP) expresados por las PRPC. Esto nos permitió superar un reto importante encontrado en otros estudios, donde las células donantes no fluorescentes fueron seguidas sólo por OCT o detectadas por histología después de la terminación. La visualización de las PRPC fluorescentes en el animal vivo nos permitió diferenciarlas de las células del huésped. En consonancia con lo descrito anteriormente, observamos dos patrones temporales de pérdida de células del donante: una reducción temprana del número de células injertadas en la primera semana del trasplante que no dependía del estado de la inmunosupresión (IS), y un rechazo retardado del injerto, observado en aquellos perros que no estaban inmunosuprimidos. De hecho, hasta donde sabemos, no hay estudios que evalúen el tiempo de pérdida de fotorreceptores tras el trasplante, con y sin IS, controlando simultáneamente la transferencia de material citoplasmático entre las células del donante y del huésped. Aquí observamos signos compatibles con el rechazo del trasplante en animales que no recibieron IS sistémico, así como en un único perro cuyo tratamiento con IS se interrumpió. El grado de inflamación clínica variaba entre los animales, pero la vasculitis retiniana, el vítreo turbio y la inflamación de la retina eran comunes en todos los perros con rechazo de las células del donante. Estos signos se detectaron por primera vez entre 1-2 y 12 semanas después del trasplante, lo que respalda la necesidad de un seguimiento frecuente de las retinas tratadas en los meses siguientes al trasplante para detectar posibles signos tempranos de rechazo y ofrecer la oportunidad de ajustar el régimen inmunosupresor. Dado que el rechazo del trasplante en el SRS también puede producirse sin inflamación clínica manifiesta, se justifica la identificación de nuevos biomarcadores que puedan detectar la inflamación subclínica temprana para modular la respuesta inmunitaria y prolongar la supervivencia del injerto. Aunque se desconocen todos los factores que promueven la supervivencia de las células del donante, descubrimos que el IS sistémico desempeñaba un papel fundamental en la supervivencia de las hESC-PRPCs administradas por vía subretiniana, como se había informado anteriormente. En el presente estudio, algunas PRPC desarrollaron estructuras similares a pedículos, expresaron la proteína presináptica sinaptofisina y establecieron contactos con las células bipolares del anfitrión. Estos resultados alentadores preparan ahora el terreno para la evaluación funcional de estas xenosinapsis. La retinosis pigmentaria es un grupo de enfermedades genéticas que provocan una pérdida progresiva de la visión, siendo una de las principales causas de ceguera en los países desarrollados. Está bien documentado que en pacientes con retinosis pigmentaria, existe una disfunción vascular asociada que conduce al adelgazamiento de los vasos; sin embargo, las implicaciones de esta disfunción vascular en la degeneración de los fotorreceptores no se comprenden completamente. Los modelos caninos de degeneraciones retinianas hereditarias han sido de gran relevancia en el desarrollo traslacional de terapias de reemplazo génico para múltiples formas de retinosis pigmentaria, Amaurosis congénita de Leber, y enfermedad de Best. De manera similar a lo que ocurre en pacientes con retinosis pigmentaria, los perros afectados con las mismas mutaciones también experimentan remodelación vascular, sin embargo, la cinética de esta remodelación vascular en enfermedades retinianas hereditarias caninas no se ha estudiado y no se han establecido los parámetros normales en el perro. La angiografía por tomografía de coherencia óptica (OCTA) es un método novedoso de obtención de imágenes sin necesidad del uso de contraste intravenoso que permite la visualización detallada de la circulación retiniana, lo que permite el estudio de los distintos plexos vasculares por separado. Esta importante extracción de imágenes de los diferentes plexos, junto con la alta resolución de estos angiogramas, permite una cuantificación más precisa de la densidad vascular y otros parámetros, teniendo muchas aplicaciones en sujetos sanos y en pacientes con diferentes enfermedades oculares y sistémicas. Con el uso de modernas técnicas de imagen, este trabajo ha confirmado la presencia de cuatro plexos retinianos distintos. Aunque muchos estudios han informado de los datos cuantitativos de las imágenes OCTA en retinas humanas, no se han descrito parámetros vasculares caninos. Este estudio proporciona datos normativos para el SVP+ICP, DCP y WR, estableciendo con éxito un rango de referencia que puede ser consultado y comparado en futuros estudios. En los ojos humanos, el número de plexos retinianos y sus densidades disminuyen hacia la periferia, y esto es similar a lo que Engerman et al. describieron previamente en perros. Nuestro trabajo no sólo confirma este hallazgo, sino que ahora proporciona datos cuantitativos para cuatro parámetros que se utilizan frecuentemente para caracterizar las redes vasculares. En nuestra evaluación, los angiogramas de OCTA tenían una mayor resolución en comparación con las imágenes de AF en la misma localización. Al igual que en el caso de los seres humanos, la angiografía por OCT en perros permitió identificar lechos capilares (ICP y DCP) que no se identificaban con la AF. Sin embargo, la AF proporcionó un mayor campo de visión y los artefactos que se encontraron en algunas de las exploraciones de OCTA (artefactos de movimiento y anormalidades de descorrelación debido al artefacto de proyección) no se observaron en las imágenes de AF. Cuando se compara con las imágenes obtenidas por IHC en montajes completos de retina, nuestro estudio confirma que la OCTA proporciona una buena visualización de la SVP y la DCP. También encontramos que había una subrepresentación de los vasos de pequeño calibre en la OCTA, especialmente los situados en capas altamente reflectantes (ICP). Cuando se compara con las imágenes adquiridas en las mismas localizaciones por microscopía confocal/IHC, nuestros resultados sugieren que la OCTA es una técnica valiosa para visualizar y cuantificar la vasculatura retiniana en perros, especialmente para el análisis de la VD en el DCP. Además, por IHC encontramos que el ICP se fusiona con el SVP pero no con el DCP como ocurre en las retinas humanas. Nuestro estudio ha confirmado la viabilidad del uso de OCTA en perros, proporcionando imágenes resueltas en profundidad de diferentes capas retinianas segmentadas que permiten la evaluación de plexos individuales. Esto allana el camino para otros análisis in vivo de la vasculatura de la retina canina en un amplio número de patologías de la retina con un fenotipo vascular. Además, evaluamos los cambios vasculares en el area centralis de perros afectados por varias formas de IRD que fueron visualizados por OCTA en diferentes etapas de la enfermedad. Identificamos que la DCP está más afectada que las redes vasculares más superficiales en una etapa temprana de la enfermedad. Además, confirmamos que existe una fuerte asociación entre el VD en el DCP y el grosor de la ONL, lo que sugiere que la evaluación de la vascularización en este plexo puede utilizarse como un marcador indirecto para la evaluación de los requisitos metabólicos de la retina externa. Por último, hemos validado mediante el análisis de los vasos en los montajes planos de la retina los hallazgos de la OCTA, y hemos descubierto que en los modelos caninos de IRD la migración de las células del RPE también desempeña un papel en las alteraciones vasculares de la fase posterior que se producen en los pacientes con RP. Encontramos que los cambios microscópicos observados en los vasos con degeneración eran diferentes en las distintas redes retinianas. En la DCP, se confirmó un estrechamiento y una pérdida progresiva de vasos, que acabó con la desaparición completa de esta red. En el SVP de los tres modelos, los vasos presentaban un mayor grosor de la pared debido a la deposición de material que rodea la pared vascular que, en las fases finales, conduce al estrechamiento y la oclusión vascular. En la fase final de la enfermedad, se observó que múltiples vasos de la SVP estaban rodeados de estructuras pigmentadas. El marcaje específico de RPE65 reveló que se trataba de células del PRE que habían migrado para rodear estos vasos internos de la retina. Aquí caracterizamos dos tipos diferentes de degeneración vascular que se producen en los plexos retinianos SVP y DCP, lo que podría aportar información para futuros estudios que evalúen específicamente la fisiopatología de esta degeneración vascular. Un animal del modelo crd2/NPHP5 fue tratado con terapia de reemplazo génica unilateralmente con una inyección subretiniana que cubría el area centralis. En este perro, la pérdida de ONL en el momento de la intervención de terapia génica era inferior al 50%. Al comparar las fotografías del fondo de ojo del ojo no tratado y el tratado, se identificó fácilmente una marcada preservación de la vascularización en el área que fue cubierta por la terapia génica. Las imágenes OCTA se procesaron con el programa AngioTool, y la evaluación cualitativa de las imágenes esqueletizadas mostró una regresión vascular en el ojo no tratado y una notable preservación de la integridad vascular en el ojo tratado. También demostramos que en estas enfermedades naturales, así como en un modelo de degeneración aguda de fotorreceptores inducido por la luz, el DCP se ve afectado antes que los otros plexos vasculares de la retina. La posterior disminución de la VD en el SVP+ICP que se produce en las últimas fases de la degeneración, es probablemente una respuesta al marcado adelgazamiento de la retina externa y a la capacidad de que el oxígeno transportado por los vasos coroideos llegue a las localizaciones internas de la retina, como se ha confirmado previamente en modelos animales felinos utilizando perfiles espaciales de oxigenación de la retina.
|
38 |
An anatomical model of the cerebral vasculature and blood flowLucas, Claire January 2013 (has links)
The brain accounts for around 2 % of human adult bodyweight but consumes 20 % of the resting oxygen available to the whole body. The brain is dependent on a constant supply of oxygen to tissue, transported from the heart via the vasculature and carried in blood. An interruption to flow can lead to ischaemia (a reduced oxygen supply) and prolonged interruption may result in tissue death, and permanent brain damage. The cerebral vasculature consists of many, densely packed, micro-vessels with a very large total surface area. Oxygen dissolved in blood enters tissue by passive diffusion through the micro-vessel walls. Imaging shows bursts of metabolic activity and flow in localised brain areas coordinated with brain activity (such as raising a hand). An appropriate level of oxygenation, according to physiological demand, is maintained via autoregulation; a set of response pathways in the brain which cause upstream or downstream vessels to expand or contract in diameter as necessary to provide sufficient oxygen to every region of the brain. Further, autoregulation is also evident in the response to pressure changes in the vasculature: the perfusing pressure can vary over a wide range from the basal-state with only a small effect on flow due to the constriction or dilation of vessels. Presented here is a new vasculature model where diameter and length are calculated in order to match the data available for flow velocity and blood pressure in different sized vessels. These vessels are arranged in a network of 6 generations each of bifurcating arterioles and venules, and a set of capillary beds. The input pressure and number of generations are the only specifications required to describe the network. The number of vessels, and therefore vessel geometry, is governed by how many generations are chosen and this can be altered in order to create more simple or complex networks. The flow, geometry and oxygen concentrations are calculated based on the vessel resistance due to flow from geometry based on Kirchoff circuit laws. The passive and active length-tension characteristics of the vasculature are established using an approximation of the network at upper and lower autoregulation limits. An activation model is described with an activation factor which governs the contributions of elastic andmuscle tension to the total vessel tension. This tension balances with the circumferential tension due to pressure and diameter and the change in activation sets the vessel diameter. The mass transport equation for oxygen is used to calculate the concentration of oxygen at every point in the network using data for oxygen saturation to establish a relationship between the permeability of the vessel wall to oxygen and the geometry and flow in individual vessels. A tissue compartment is introduced which enables the modelling of metabolic control. There is evidence for a coordinated response by surrounding vessels to local changes. A signal is proposed based on oxygen demand which can be conducted upstream. This signal decays exponentially with vessel length but also accumulates with the signal added from other vessels. The activation factor is therefore set by weighted signals proportional to changes in tissue concentration, circumferential tension, shear stress and conducted oxygen demand. The model is able to reproduce the autoregulation curve whereby a change in pressure has only a small effect on flow. The model is also able to replicate experimental results of diameter and tissue concentration following an increase in oxygen demand.
|
39 |
Genetic analysis of retinal traitsKirin, Mirna January 2014 (has links)
Retina is a unique site in the human body where the microcirculation can be imaged directly and non-invasively, allowing us to study in vivo the structure and pathology of the human microcirculation. Retinal images can be quantitatively assessed with computerized imaging techniques, enabling us to measure several different quantitative traits derived from the retinal vasculature. Arterial and venular calibres are the most extensively studied traits of the retinal microvasculature and numerous epidemiological studies demonstrated promising associations with systemic and ocular diseases as well as with disease markers. However, there has been a lack of research into pathophysiological processes leading to retinal vascular signs, and how they link retinal microcirculation with coronary and cerebral microvasculature change. Information about genetic determinants underlying retinal vascular structure is therefore important for understanding the processes leading to microvascular pathophysiology. Two genome wide association studies have been published so far revealing four loci associated with retinal venular calibre and one locus with arteriolar calibre. Here the results from the genome-wide association analysis of 10 different retinal vessel traits in two population based cohorts are presented. Retinal images were measured in non-mydriatic fundus images from 808 subjects in the Orkney Complex Disease Study (ORCADES) and 390 subjects from the Croatian island of Korcula, using the semi-automated retinal vasculature measurement programme SIVA and VAMPIRE. Using pairwise estimates of kinship based on genomic sharing, heritability was calculated for each trait. Estimates of tortuosity measure and fractal dimensions present first published reports of heritability estimates for those traits. In addition correlation analysis with systemic risk factor was also completed, confirming already published results as well as revealing some new associations. A genome wide association analysis of retinal arteriolar width revealed a genome wide significant hit (1.8x10-7) in a region of chromosome 2q32 (within TTN gene). Replication was sought in a further independent Scottish population (LBC) and additional 400 retinal images were graded. The result did not replicate, however the direction of the effect was consistent and a larger sample size is required. Analysis of the remaining traits did not yield genome wide significant result,s and will also require larger sample sizes. Genetic analysis of a binary retinal trait was also explored in a case control study of retinal detachment, which is an important cause of vision loss. A two-stage genetic association discovery phase followed by a replication phase in a combined total of 2,833 RRD cases and 7,871 controls was carried out. None of the SNPs tested in the discovery phase reached the threshold for association. Further testing was carried out in independent case-control series from London (846 cases) and Croatia (120 cases). The combined meta-analysis identified one association reaching genome-wide significance for rs267738 (OR=1.29, p=2.11x10-8), a missense coding SNP and eQTL for CERS2 encoding the protein ceramide synthase 2. Additional genetic risk score, pathway analysis and genetic liability analysis were also carried out.
|
40 |
Social Networks of Receptor-like Kinases Regulate Cell Identity in Arabidopsis thalianaBryan, Anthony C. January 2011 (has links)
Receptor-like kinases (RLKs) make up one of the largest gene families in Arabidopsis thaliana. These genes are required for various biological processes, including response to biotic stress, cell elongation, cell proliferation, and cell fate patterning. An emerging theme in Arabidopsis and other plants is that networks of RLKs are required to regulate a specific process throughout development involving spatial and temporal regulation of transcription factors. However, there are still many RLKs (>50%) with no known function.Several RLKs regulate epidermal development by contributing to early embryonic epidermal maintenance or to epidermal differentiation. In my first analysis, I characterize the role of two related RLKs GASSHO1 (GSO1) and GSO2 in epidermal differentiation. gso1 gso2 double mutants initially form an epidermis during embryogenesis, but analysis of post-embryonic root development indicates the mis-expression of epidermal-specific genes. Three previously characterized RLKs that are involved in epidermal development are also involved in meristem maintenance. In order to decipher the RLK gene networks controlling epidermal development and meristem maintenance, it is necessary to identify additional RLKs involved in both of these processes. I further identified roles for GSO1 and GSO2 in maintaining root growth and root apical meristem (RAM) activity. A future goal will be to elucidate the networks of RLKs, including GSO1 and GSO2 in regulating epidermal and RAM development.The development of the vasculature in plants is controlled by a vascular meristem, the procambium. Oriented cell divisions from the procambium produce phloem, to the periphery, and xylem, to the center of the plant. In a reverse genetic screen to determine to roles of the remaining RLKs with unknown function, we identified the RLK XYLEM INTERMIXED WITH PHLOEM1 (XIP1) that is required for vascular development. We show XIP1 is required for regulating the differentiation of the phloem and for the organization of xylem vessel elements. Our analysis indicates that XIP1 is part of a vascular meristem network, further emphasizing the importance of social networks of RLKs regulating a specific process in development.
|
Page generated in 0.0519 seconds