• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 228
  • 211
  • Tagged with
  • 439
  • 439
  • 438
  • 67
  • 64
  • 35
  • 33
  • 32
  • 28
  • 25
  • 25
  • 24
  • 23
  • 22
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

On-site sanitation systems - An integrated assessment of treatment efficiency and sustainability / Små avloppsystem – En integrerad utvärdering av funktion och hållbarhet

Vidal, Brenda January 2018 (has links)
Small on-site sanitation systems for wastewater collection and treatment are prevalent in suburban and rural areas in many countries. However, these systems often underperform, causing potential impact to the receiving waters and increasing the risks to public health, thus hindering the overall sustainability of the systems. Understanding the different sustainability dimensions and trade-offs between assessment indicators can support the planning of sustainable on-site sanitation systems for a specific context. The overall aim of this thesis was to evaluate the sustainability and function of on-site sanitation systems by defining a set of indicators to assess on-site sanitation options and estimating them for different scenarios, and by investigating the treatment efficiency of on-site facilities for domestic wastewater treatment in a field study. Particular attention was given to the removal of phosphorus (P) and indicator bacteria due to their relevance in terms of eutrophication risk and public-health concern. In a multi-criteria approach, twelve indicators were defined to assess nine on-site sanitation systems. A reference group representing stakeholders’ views assigned weights to express the relative importance of each indicator. The reference group assigned the highest weights to the indicators robustness, risk of pathogen discharge and nutrient removal. Assessing the robustness proved to be challenging, as there is a gap between how the sanitation systems are expected to perform based on their design, and how they actually perform in practice, mainly due to incorrect construction, operation and maintenance. The discriminating power of the indicators was calculated using the entropy method, which showed that the indicators energy recovery and capital cost had little impact in the final ranking of the alternatives. A sustainability ranking was obtained by using the method ELECTRE III. A scenario analysis based on different settings of interest based on socio-economic and geographical factors was done to evaluate the changes in the ranking of alternatives. Overall, the greywater–blackwater separation system ranked the highest in the baseline scenario and when nutrient-related indicators were important (Scenario 2), together with the urine diversion system. The sand filter and drain field were the most sustainable options when nutrient removal and recycling was not important (Scenario 1), and (in combination with chemical P-removal) when the indicators related to energy and climate change had the highest weights (Scenario 3). In terms of P-removal, chemical removal outranked the alkaline P-filter. In a field study, the effluent wastewater from twelve on-site wastewater treatment facilities with sand and alkaline P-filters was evaluated in terms of removal and discharge of organic content, total and dissolved phosphorus, and indicator bacteria (E. coli, total coliforms, intestinal enterococci and C.perfringens). The results showed that the investigated sand filters generally had low P-removal capacity and sometimes exceeded the criteria for excellent water quality set by the EU bathing water directive with regard to intestinal enterococci and E. coli. Only one sand filter of eight was confirmed to remove P according to the Swedish guidelines for areas with non-sensitive receiving waters with a tot-P effluent concentration below 3 mg L−1. This indicates that a downstream treatment step is needed to meet the guidelines regarding P discharge concentrations. Alkaline P-filters generally removed P efficiently. Despite high effluent pH, the collected data did not generally confirm a further reduction of the bacterial content of the wastewater in the P-filters, as had been previously hypothesized. However, effluent concentrations of indicator bacteria showed moderate positive correlations with effluent concentrations of P and organic matter, indicating the potential of the P-filters to serve as a polishing step also for bacteria. / Små lokala avloppssystem för insamling och rening av avloppsvatten är vanligt förekommande i omvandlings- och landsbygdsområden i många länder. Dessa system fungerar ofta sämre än förväntat vilket kan leda till effekter på recipienter, ökad risk för folkhälsan och begränsa systemens hållbarhet. En djupare förståelse för hållbarhetsdimensioner och avvägningar mellan olika indikatorer kan stödja planering och implementering av hållbara lokala avloppsystem för specifika sammanhang. Det övergripande syftet med denna uppsats var att utvärdera hållbarhet och funktion av enskilda avloppssystem. Detta utfördes genom att först definiera en uppsättning indikatorer för bedömning av ett antal enskilda avloppsalternativ och sedan utvärdera dem för olika scenarier. Vidare var syftet att undersöka några systems prestanda för rening av hushållsavloppsvatten i en fältstudie. Särskilt fokus lades på reduktion av fosfor (P) och indikatorbakterier på grund av deras relevans i relation till övergödningsrisk och folkhälsoperspektiv. I en multikriteriestudie definierades tolv indikatorer för att bedöma nio typer av enskilda avloppssystem. En referensgrupp som representerade olika intressenter viktade indikatorerna för att uttrycka den relativa betydelsen av varje indikator. Referensgruppen gav systemens robusthet, risk för utsläpp av patogener, och näringsreduktion störst vikt. Att bedöma robusthet var en utmaning i studien, eftersom det finns ett gap mellan hur systemen förväntas fungera, och hur de faktiskt fungerar i praktiken, mestadels på grund av felaktig konstruktion, drift och underhåll. Indikatorernas diskriminerande effekt räknades ut med entropimetoden, som visade att indikatorerna energiåtervinning och kapitalkostnad hade liten inverkan på alternativens slutgiltiga rangordning. En scenarioanalys genomfördes baserad på socioekonomiska och geografiska faktorer. En hållbarhetsrankning erhölls genom att använda ELECTRE III-metoden. Överlag rankades system som separerar gråvatten – svartvatten samt urinseparerande system högst i basfallsscenariot och när näringsrelaterade indikatorer var viktiga (scenario 2). Markbäddar och infiltrationsanläggningar var de mest hållbara alternativen när rening och återvinning av näringsämnen inte var viktigt (scenario 1) och (i kombination med kemisk P-rening) när indikatorer relaterade till energi och klimatförändringar viktades högst (scenario 3). När det gäller P-rening, gav system med kemisk rening ett bättre utfall än de med alkaliska P-filter. I en fältstudie utvärderades tolv enskilda avloppsanläggningar med markbaserade system och alkaliska P-filter med avseende på rening och utsläpp av organiskt innehåll, totalt och löst P och indikatorbakterier (E.coli, totala koliformer, intestinala enterokocker och C.perfringens). Resultaten visade att de markbaserade systemen generellt hade låg P-reningskapacitet och ofta överskreds kriterierna för utmärkt vattenkvalitet enligt EUs badvattendirektiv avseende intestinala enterokocker och C. perfringens. Endast ett markbaserat system av åtta uppvisade en P-rening som låg under de svenska riktlinjerna för områden med normal skyddsnivå, med en utsläppskoncentration på under 3 mg L-1 tot-P. Detta indikerade att markbäddar behöver nedströms placerade reningssteg för att uppfylla nuvarande riktlinjer för utsläpp av P. Alkaliska P-filter avskilde generellt P effektivt. Trots högt pH-värde kunde ingen ytterligare minskning av bakterieinnehåll i avloppsvattnet från P-filtren påvisas statistiskt. Utsläppen av indikatorbakterier uppvisade emellertid måttliga positiva korrelationer med utsläpp av P och organiskt material, vilket visar på en viss potential att P-filtren kan fungera som ett ytterligare poleringssteg även för bakterier.
292

Rening av bionedbrytbart löst organiskt kol (BDOC) i dricksvatten : En studie av vattenreningsprocesser vid Lovö vattenreningsverk med fokus på BDOC och potential för mikrobiell återväxt

Frösegård, Camilla January 2017 (has links)
Halten organiska kolföreningar ökar i svenska ytvatten till följd av bland annat klimatförändringar och förändrad markanvändning i avrinningsområdet. Organiskt kol bidrar till färg, smak och lukt på vattnet och fungerar även som substrat för akvatiska mikroorganismer. Ungefär hälften av svenskt dricksvatten produceras idag från ytvatten. Det är av stor vikt att det organiska kolet, och då särskilt den bionedbrytbara lösta kolfraktionen, BDOC, renas bort från dricksvatten då dessa kolföreningar annars kan utgöra en fara för dricksvattensäkerheten. Vid Lovö vattenreningsverk i Stockholm testas nu en ny jonbytesbaserad reningsprocess i pilotskala för att förbättra vattenreningen av ytvatten med förhöjda halter organiska kolföreningar. För att undersöka och utvärdera den nya reningsprocessen togs vattenprover på ingående råvatten och därefter mellan varje steg i den jonbytesbaserade reningsprocessen. För jämförelse genomfördes samma provtagning i den fullskaliga, konventionella reningsprocessen, en process som idag producerar dricksvatten till konsumenter i norra delen av Stockholm. Proverna inkuberades i mörker i 20° C under cirka tre veckor. Under tiden utfördes mätningar och prover togs för analys. De parametrar som analyserades var syrgaskonsumtion, förändringar i bakteriehalt och halten totalt organiskt kol (TOC), samtliga med målet att kvantifiera den mikrobiella tillväxtpotentialen och innehållet av BDOC. Analyserna visade att det nya processteget i pilotanläggningen, som baseras på suspenderade anjonbytare, har potential att rena bort delar av den bionedbrytbara fraktionen av TOC. Det efterföljande, desinficerande, ozoneringssteget oxiderar därefter delar av kvarvarande TOC till mer bionedbrytbar form. Det allra sista reningssteget, ett granulerat aktivt kolfilter var ej i drift under projektet. Detta steg har dock i andra studier visats rena bionedbrytbart kol effektivt, varför den sammantagna bedömningen är att den nya reningsmetoden har god potential för rening av bionedbrytbara kolföreningar.
293

Sensitivity analysis of grate inlet representation and a comparison of two coupled hydraulic models for urban flood simulation / Känslighetsanalys av dagvattenbrunnars representation och en jämförelse mellan två kopplade hydrauliska modeller för simulering av urban översvämning

Lundqvist, Daniel January 2020 (has links)
Urban flood models are an important tool in designing and analyzing municipalities sewer drainage systems and predicting the effect of potential extent and depth of future floods. In urban areas, coupled 1D-2D flood models are particularly useful as they can represent the surface- and sewer system and their interactions. But it iss common practice to simplify the sewer system by only simulating water exchange between both systems at manholes while neglecting the effect of grate inlets. To investigate the effect grate inlet representations have in flood models, the simulation results of different models created in the software MIKE FLOOD with the number of nodes and inlet sizes adjusted according to the location of actual grate inlets were compared. In addition, a comparison between the flood modeling softwares MIKE FLOOD and FLO-2D was performed, based on a case study in Motala.. It was found that both MIKE FLOOD and FLO-2D can predict similar flood propagation and maximum water depths. The MIKE FLOOD models predicted larger amounts of drained water via the sewer system. This was likely caused by the extra water added through water level correction in the MIKE FLOOD models combined with numerical instabilities in the FLO-2D sewer models. Adjusting the number and dimensions of nodes according to actual grate inlets proved to have little effect on the predicted maximum surface water depths. But it did result in decreased drainage capacity together with less sewer inflow compared to the models neglecting grate inlets. The inlet representation did have a significant effect on predicted flood durations, with the models neglecting grate inlets having shorter flood durations in downstream areas and longer flood durations in upstream areas compared to the other models. It was also found that that the effect inlet node representations has on flood durations heavily depends on their locations with nodes located in water gathering areas such as depressions with ponding water having the most effect.
294

COMPUTATIONAL FLUID DYNAMICS MODELING FOR BENT SPILLWAY CHANNEL : Numerical validation of a small scale physical model

Björnfot, Mikael January 2020 (has links)
Hydropower plants with spillways exposed to high pressures because of large discharges can result in a dam failure which ultimately results in devastating consequences. Therefore properly designed and constructed spillways are important. In this project there is an interest in examining the pressure distribution on a guided wall, measuring the water level inside the spillway and examine the water flow characteristics. The main purpose was to numerically model the flow behaviors at two upper pool levels +29.82 m and +30.92 m in order to achieve a comparison between a numerical model and a physical model. A previous experiment was carried out at Vattenfall R&D in Älvkarleby where a physical model was built. The main purpose of that study was to find an optimal form of a guide wall for free weir flow. This study served as guidelines for what should be investigated in this project. The methodology of the project began with a development of an initial CAD model created by Vattenfall R&D. The CFD model could be constructed into a volume model containing also an upstream reservoir. Next, a mesh that could numerically calculate the flow behavior was created in order to enable execution of the calculations. Furthermore, a big part of the method was to adjust the settings in Fluent so that the numerical model could recreate the flow behaviors of the physical model tests. The results indicate that the numerical model is an accurate replica of the physical model. The deviation comprising the mass flow rate came as close as 0.6 % from the physical model for the lower upper pool level. Highest calculated pressure was positioned at the bottom of the guided wall for both upper pool levels, which the results conducted from the physical model also indicated. Furthermore, results regarding the water level at the guided wall confirmed same statement Vattenfall's examinations pointed out, that the roof placed at the guided wall is needed in order to avoid major splashing. The present project has shown great results regarding the flow characteristics, pressure distribution, and the water level at the guided wall. Therefore, it is considered trustworthy enough to be used as a tool for Vattenfall R&D in future studies comprising the targeted spillway.
295

In the Pipe or End of Pipe? : Transport and Dispersion of Water-borne Pollutants and Feasibility of Abatement Measures

Carstens, Christoffer January 2012 (has links)
Eutrophication is one of the key environmental problems of today, both in terms of complexity and magnitude. For the Baltic Sea (BS), eutrophication is an acute problem, leading to hypoxic conditions at the bottom; a situation that is sustained and amplified, when phosphorus is released from hypoxic sediments. Reducing nutrient loading is a top political priority but the present situation is believed to require active measures within the catchments and recipients to reduce both loading and adverse effects. Implementation of effective and cost-efficient abatement methods requires understanding of natural processes in watersheds, streams and recipients as well as technological expertise in order to compare the effects of measures of different kinds and locations. This thesis tries to combine process understanding of catchment transport behaviour, especially in coastal zones, and feasibility of certain technologies for reducing nutrient loading and effects of eutrophication in-situ. The over-arching theme is the fate of the individual contaminant, from injection to removal. Transport and dispersion in catchments are investigated, combining physically-based, distributed, numerical groundwater models with Lagrangian stochastic advective reactive solute (LaSAR) transport modelling. The approach is powerful in the sense that it incorporates catchment structural, geomorphological dispersion in the numerical model with hydrodynamic and sub-scale dispersion as well as uncertainty in the LaSAR framework. The study exemplifies the complex nature of transport time distributions in catchments in general and when varying source size and location, importance of dispersion parameters and retention due to molecular diffusion. It is shown that geomorphological control on dispersion is present even for relatively heterogeneous systems and that neither the mean residence time nor a statistical distribution may provide accurate representations of hydrological systems. To combat internal loading of P from sediments in-situ, large-scale aeration of deep waters, halocline ventilation, has been suggested. This study further investigates the feasibility of wave-powered devices to meet the energy demands for such an operation. It is shown that the required amount of oxygen needed to keep the sediments at oxic conditions could be provided, cheaply and efficiently, through the use of wave power. / QC 20120511
296

Water Supply of Accra, with Emphasis on Sachet Water.

Diawuo, Felix January 2011 (has links)
This project seeks to assess the impact of the sachet water industry on the health, socio-economic and the environmental situation of the inhabitants of Accra, the capital city of Ghana. In addressing the situation, the driving forces which have fuelled the shift of consum-er taste from the normal tap water and the traditional hand-tied-ice water products to the plastic sachet water (commonly known in as "Pure Water") are identified. Lack of access to continuous flow of improved water and the perceived poor quality of the urban water supply system as results of poor management structure are identified as some of the factors for the shift in consumers’ taste for plastic sachet and bottled drinking water. The quality of the plastic sachet is also assessed through the review of previous research results. These are confirmed by laboratory analysis of about six brands of plastic sachet water and two brands bottled drinking water. The laboratory analysis carried out assessed the microbial, physical and chemical quality of the various samples. To assess the health impacts of the products, the results from the analysis are compared with WHO guideline values and other international guideline values. Questionnaires are also administered to ascertain the socio-economic impacts of the products on the life of the young men and women as well sachet water manufacturers. From this, some measures are suggested as to how to mitigate the activities of the sachet water business to reduce its negative effects on the health, the environment and the socio-economic status of the inhabitants of the city.
297

Cavitation assessment of the Baihetan discharge tunnel – Using Computational Fluid Dynamics / Bedömning av risken för kavitation i utskovstunneln för Baihetankraftverket med CFD-beräkningar.

Alderman, Carin, Andersson, Sophia January 2012 (has links)
Recently it has become more common in the construction of large dams to reuse diversion tunnels as flood discharge tunnels in the final structure. These tunnels handle large flows with the characteristics of open channel flow. When such large hydrological forces act upon a structure there are several problems to be expected. One of these is the occurrence of cavitation, which could have potential hazardous erosion as a consequence. Cavitation is the formation and collapse of bubbles that create a shockwave strong enough to erode the underlying material. The Baihetan dam is one of the largest hydro power projects in China at present. It has three discharge tunnels that all run the risk of developing cavitation damages. By modelling one of the tunnels using Computational Fluid Dynamics (CFD) it is possible to investigate where in the tunnel structure cavitation is likely to occur. This degree project assesses the risk of cavitation erosion in the Baihetan tunnel using the static pressure distribution, the velocity distribution and modern cavitation theory. Several modifications of the tunnel – including alterations in the gradient and construction parameters – are simulated in order to investigate if changes in the design can mitigate the cavitation problem. None of the analysed modifications completely eliminate the problem and aeration is recommended to counteract the problem. This study indicates where cavitation might be a problem in the Baihetan tunnel and can be used as a basis for further research.
298

Enhanced biogas production by increasing organic load rate in mesophilic anaerobic digestion with sludge recirculation.

Huang, Zhanzhao January 2012 (has links)
For enhancing anaerobic sludge digestion and biogas recovery, an increase in organic load rate (OLR) from 1.0 to 3.0kgVS/(m3·day) was imposed upon a new anaerobic digestion process combined with a sludge recirculation. The new setup requires a traditional mesophilic anaerobic digester coupled with a centrifuge for maintaining relatively high solid content within the digester. The hypothesis of this study was that increasing continuously OLR from 1.0 to 3.0kgVS/(m3·day) in a pilot-scale anaerobic digester with recycled sludge would not badly influence the digester stability, based on which biogas production would be enhanced. To test this hypothesis, a continuous 73-day study with laboratory experiment was conducted. Due to scarcity of original feeding sludge and its deteriorating quality, OLR had to be increased relied on introduction of extra sludge followed by measurement of total solid (TS) and volatile solid (VS) contents in both feeding sludge and digester sludge, for calculating OLR and examining its variations. To assess the relationship between biogas production and OLR, a measurement of gas yield and methane content was a necessity, performed by applying a biogas flow meter and MSA AUER EX-METER II (P). Moreover, temperature, pH value, volatile fatty acid (VFA) and alkalinity must be tested frequently, for the purpose of preventing system failure. The results demonstrate that the digester succeeded in withstanding an OLR up to 3.15kgVS/(m3·day). Furthermore, an enhancement in biogas yield and methane content were observed after increasing the OLR by introducing extra sludge. Biogas production measurement performed during this study indicated that biogas yield was enhanced by 73%, with a maximum production of 14.5m3/day, when OLR was increased from 2.05 to 3.15kgVS/(m3·day). However, methane content was merely promoted by 10.5%, to the highest value of 63%, with the same increase in OLR. Specific gas production (SGP), as another means of evaluating the relationship between biogas production and OLR, was observed to be 0.65Nm3/kg VSin averagely.
299

Numerical modeling of a slotted flip bucket spillway system – The Shibuya Hydropower Project. / Numerisk modellering av ett skidbacksutskov i Shibuya vattenkraftsystem.

Axelsson, Johan, Knutsson, Roger January 2011 (has links)
CFD is today a big part of the design process in hydraulic engineering and is more economical and time efficient than traditional scale models. But, there are still issues concerning the agreement with scale models in large and complex geometries. In this degree project a high head, five channeled, slotted flip bucket spillway system is analyzed with the CFD software FLUENT and compared with existing scale model results. The sought hydraulic parameters in each channel were the discharge capacity, the pressure distribution and the throw distance from the flip buckets. The discharge capacity and pressure distribution was practically equal for all five channels and only the throw distance from Channel 1 deviated from the others. The agreement with data from the scale model is quite low. The biggest error sources behind the bad agreement may depend on the lack of computational power which led to bad choice of cell size, model delimitations and simplifications. CFD models can easily be built up by people without experience in hydraulics which can lead to fatal errors when building up the model and interpreting results. Hence, long experience in CFD or verification of the numerical results with several different hydraulic parameters is the only way to guarantee qualitative results from CFD modeling.
300

Hydrodynamic capacity study of the wave-energized Baltic aeration pump : General applicability to the Baltic Sea and location study for a pilot project in Kanholmsfjärden

Carstens, Christoffer January 2008 (has links)
To counteract one of the most urgent environmental issues in the Baltic Sea; eutrophication, excessivealgal blooms and hypoxia, a proposal to use wave energy to pump oxygen-rich surface water towardsthe sea bottom is investigated. Proposals have suggested that 100 kg of oxygen per second is needed tooxygenate bottom water and enhance binding of phosphorus to bottom sediments. This corresponds to 10 000 m3/s of oxygen-rich surface water. This thesis investigates a wave-powered device to facilitatethis oxygen ux. Results give expected water flow rates between 0.15 - 0.40 m3/s and meter breakwater.The mean specic wave power for the analyzed wave data is calculated to be between 3 - 4 kW/m wavecrest and the median to 1 kW/m. This study indicate, however, that the energy uxes in the BalticProper are signicantly higher. The study gives that the wave climate of the Baltic Sea is suffciently intense to facilitate vertical pumping with a feasible number of breakwaters. A full-scale implementationin the Baltic Sea would require some 300 to 1 200 oating breakwaters of a length of 50 m each. Thetotal cost is roughly estimated to 170 - 680 million EURO. The study also concludes that the interleavingof surface water should be constrained to a relatively small vertical distance from the outlet depth(20 - 30 m) and not stir up deep water to the surface. Wave modelling for the proposed pilot locationKanholmsfjärden indicate that this bay is not large enough to permanently produce a favorable waveclimate. It is, however, still an interesting location consistently to its vicinity to Stockholm and relativelylong measurement series.

Page generated in 0.0769 seconds