• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 118
  • 51
  • 12
  • 10
  • 9
  • 6
  • 4
  • 2
  • 2
  • Tagged with
  • 262
  • 262
  • 83
  • 75
  • 46
  • 40
  • 40
  • 38
  • 35
  • 33
  • 31
  • 26
  • 26
  • 24
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Pump Displacement Control in Steering On-Highway Commercial Vehicles

Amine Nhila (6194160) 10 January 2019 (has links)
<div>Due to recent advances in sensor technology and the exponential increase in computation power of electronic control units (ECUs) along with their increasing affordability, active safety and vehicle automation have become major trends in the commercial vehicle industry. New regulations for increased safety are also a major driver behind the industry's increased interest in that topic. As a result, being a crucial part of vehicle automation, steering systems had to be adapted to enable Active Steering. Consequently, commercial vehicle steering designers introduced the concept of torque and angle overlay using an electric motor in series with the conventional hydraulic steering system. However, despite the fact that these systems are becoming more prevalent in the market, they still suffer from inefficiencies intrinsic to the conventional hydraulic steering system still being used. These inefficiencies are a result of</div><div>flow metering losses due to the use of control valves to regulate the pump flow output, as well as inside the steering gear with the use control valves to build assistance pressure.</div><div><br></div><div><div>In this research project, we investigate the potential use of the proven pump Displacement Control (DC) technology in steering on-highway commercial vehicles. DC pumps have been shown to signicantly improve system efficiency as they allow the removal of control valves typically used to regulate </div><div>ow [1]. Instead, the displacement of the pump can be directly controlled to vary the pump's flow rate and direction,</div><div>and thus eliminating throttling losses. The DC technology has been successfully used in a steer-by-wire conguration for an articulated frame steering vehicle and has been shown to signicantly improve efficiency and productivity, as well as result in a reduction in fuel consumption [2].</div></div><div><br></div><div><div>In this work, we propose a steer-by-wire system, using DC pump technology, for on-highway commercial vehicles, and present the dierent possible congurations in which it can be implemented. Moreover, the benets and drawbacks of the steer-by-wire system are researched and identied. Subsequently, the system is designed and validated in simulation, on laboratory test setup, as well as on a test vehicle to prove its feasibility.</div></div><div><br></div><div><div>Chief among the drawbacks of the steer-by-wire system is potential failures that can lead to the complete loss of the steering function of the vehicle. As a result, different possible fail-safe mechanisms are researched from which the most suitable ones are proposed to allow the steer-by-wire system to fail safely. Moreover, two of the proposed fail-safe mechanism are implemented onto the test vehicle to prove and validate their feasibility.</div></div><div><br></div><div><div>Furthermore, an alternative way of using displacement controlled pumps for active steering is be proposed. For this concept, we investigate the possibility of actively controlling the driver's steering effort by varying the pump displacement while maintaining the mechanical link between the steering wheel and the road wheels. If successful, this method will allow for a more efficient way of providing steering assistance as it does away with the conventional control valves used to build pressure and regulate pump flow, and thus eliminating throttling losses. This method has also the advantage of having an intrinsic fail-safe mechanism with manual steering being always possible should the hydraulic or electric systems fail.</div></div>
192

helvis III - Desenvolvimento e caracterização da plataforma robótica / helvis III - Development and characterization of a robotic plataform

Baquero Velasquez, Andres Eduardo 24 February 2015 (has links)
O principal propósito deste trabalho é desenvolver e caracterizar o veículo robótico &#8463;elvis III, para ser usado no desenvolvimento de pesquisas na área de controle e navegação de robôs móveis. O sistema de propulsão foi caracterizado para determinar a velocidade real do veículo em quatro tipos diferentes de terrenos (Asfalto, grama, grama-terra e terra). Também foi caracterizado o sistema de esterçamento mediante o modelo cinemático da bicicleta, onde se obteve a relação entre a posição do servo motor encarregado do esterçamento do veículo e o valor do ângulo de esterçamento de uma bicicleta. Foram determinados os valores dos erros CEP (Circular Error Probability) e SEP (Spherical Error Probability) do GPS (Global Positioning System) embarcado no veículo mediante dois testes: um em São Carlos &#8211; SP (Brasil) e outro em Villavicencio &#8211; Meta (Colômbia). Nesses testes foi caracterizada a IMU (Inertial Measurement Unit) embarcada no veículo, além de verificado o efeito da luz solar no funcionamento do sensor tipo LIDAR (Laser Imaging Detection and Ranging) embarcado no helvis III. Por último, pode-se definir a dinâmica do veículo à frente, com a determinação seu centro de massa, e é apresentado o comportamento das forças sob as rodas quando o veículo fica parado ou em movimento sobre terrenos que geram uma inclinação em algum dos eixos cartesianos. / The main objective of this work is the development and characterization of a robotic vehicle &#8463;elvis III in order to use it in the development of researches focused on the fields of mobile robotics control and navigation. Initially the propulsion system was characterized in order to determine the real velocity of vehicle in real conditions (four different kinds of grounds were used). In addition to this, the steering system was also characterized by applying the well-known bicycle kinematic model. During these experimental tests we could find the relation between the position of the servo-motor and the value of steering angle of the bicycle model. The real values of CEP (Circular Error Probability) and SEP (Spherical Error Probability) errors of the vehicle embedded GPS (Global Positioning System) were determined based on two experiments: the first one was carried out in São Carlos &#8211; SP (Brazil) and the second one in Villavicencio &#8211; Meta (Colombia). During the GPS experiments we could also characterize the vehicle embedded IMU (Inertial Measurement Unit). Then we could observe and measure the effect of solar light on the LIDAR sensor (Laser Imaging Detection and Ranging) performance. Finally, the forward vehicle dynamics is described, with the determination of the center of mass of the vehicle and the observation of the normal forces behavior in the vehicle wheels when it is stopped or moved on an inclined floor.
193

Des systèmes d'aide à la conduite au véhicule autonome connecté / From driving assistance systems to automated and connected driving

Monot, Nolwenn 09 July 2019 (has links)
Cette thèse s’inscrit dans le développement et la conception de fonctions d’aide à la conduite pour les véhicules autonomes de niveau 3 et plus en milieu urbain ou péri urbain. Du fait d’un environnement plus complexe et de trajectoires possibles plus nombreuses et sinueuses, les algorithmes des véhicules autonomes développés pour l’autoroute ne sont pas adaptés pour le milieu urbain. L’objectif de la thèse est de mettre à disposition des méthodes et des réalisations pour permettre au véhicule autonome d’évoluer en milieu urbain. Cette thèse se focalise sur la proposition de solutions pour améliorer le guidage latéral des véhicules autonomes en milieu urbain à travers l’étude de la planification de trajectoire en situation complexe, l’analyse du comportement des usagers et l’amélioration du suivi de ces trajectoires complexes à faibles vitesses. Les solutions proposées doivent fonctionner en temps réel dans les calculateurs des prototypes pour pouvoir ensuite être appliquées sur route ouverte. L’apport de cette thèse est donc autant théorique que pratique.Après une synthèse des fonctions d’aide à la conduite présentes à bord des véhicules et une présentation des moyens d’essais mis à disposition pour la validation des algorithmes proposés, une analyse complète de la dynamique latérale est effectuée dans les domaines temporel et fréquentiel. Cette analyse permet alors la mise en place d’observateurs de la dynamique latérale pour estimer des signaux nécessaires aux fonctions de guidage latéral et dont les grandeurs ne sont pas toujours mesurables, fortement dégradées ou bruitées. La régulation latérale du véhicule autonome se base sur les conclusions apportées par l’analyse de cette dynamique pour proposer une solution de type multirégulateur capable de générer une consigne en angle volant pour suivre une trajectoire latérale quelle que soit la vitesse. La solution est validée tant en simulation que sur prototype pour plusieurs vitesses sur des trajectoires de changement de voie. La suite de la thèse s’intéresse à la génération d’une trajectoire en milieu urbain tenant compte non seulement de l’infrastructure complexe (intersection/rond-point) mais également des comportements des véhicules autour. C’est pourquoi, une analyse des véhicules de l’environnement est menée afin de déterminer leur comportement et leur trajectoire. Cette analyse est essentielle pour la méthode de génération de trajectoire développée dans cette thèse. Cette méthode, basée sur l’algorithme A* et enrichie pour respecter les contraintes géométriques et dynamiques du véhicule, se focalise d’abord dans un environnement statique complexe de type parking ou rond-point. Des points de passage sont intégrés à la méthode afin de générer des trajectoires conformes au code de la route et d’améliorer le temps de calcul. La méthode est ensuite adaptée pour un environnement dynamique où le véhicule est alors capable, sur une route à double sens de circulation, de dépasser un véhicule avec un véhicule arrivant en sens inverse. / This thesis is about the design of driving assistance systems for level 3 urban automated driving. Because of a more complex of the environment and a larger set of possible trajectories, the algorithms of highway automated driving are not adapted to urban environment. This thesis objective is to provide methods and algorithms to enable the vehicle to perform automated driving in urban scenarios, focusing on the vehicle lateral guidance and on the path planning. The proposed solutions operate in real-time on board of the automated vehicle prototypes. The contribution of this thesis is as theoretical as practical.After a synthesis of the driving assistance systems available on current cars and a presentation of the prototypes used for the validation of the algorithms developed in the thesis, a complete analysis of the vehicle lateral dynamics is carried out in time and frequency domains. This analysis enables the design of observers of the lateral dynamics in order not only to estimate signals required for the lateral guidance functions but also to increase reliability of available measurements. Based on the conclusions from the analysis of lateral dynamic, a multi-controller solution has been proposed. It enables the computation of a steering wheel input to follow a trajectory at any longitudinal speed. The solution is validated in simulation and on real road traffic for lane change scenarios. Another contribution consist in an analysis on the other vehicles of the environment is conducted in order to identify their behaviors and which maneuver there are performing. This analysis is essential for the path planning function developed in the thesis. This method, based on the A* algorithm and extended to respect geometric and dynamic constraints, firstly focuses on static environment such as a parking lot. Waypoints are added to the method in order to compute trajectories compatible with traffic regulation and improve the computation time. The method is then adapted for dynamic environment where, in the end, the vehicle is able to perform overtaking manoeuvers in a complex environment.
194

Observateurs robustes pour le diagnostic et la dynamique des véhicules

Jaballah, Belgacem 02 December 2011 (has links)
Ces dernières décennies, la recherche et l'application de l'automatique dans les domaines de l'automobile, a contribué fortement dans les aspects sécurité, confort des usagers, économie d'énergie et aide au pilotage.Dans ce contexte, l'objectif principal de cette thèse est le développement d'observateurs par modes de glissement pour l'estimation des états dynamiques, les paramètres dynamiques ainsi que les attributs de la route (dévers de la route), considérés comme des entrées inconnues. Ce type d'observateur est basé sur la théorie des systèmes à structures variables et par l'utilisation d'un modèle représentant de façon réaliste le comportement dynamique du véhicule. A cet effet une proposition de découpage de modèle dynamique complet du véhicule en trois sous-systèmes basé sur le théorie de la passivité a été proposé. Toutes les approches développées ont été validées sur les deux simulateurs de véhicules SCANeRstudio et SIMK106N. / The general framework of the research is the application of the nonlinear control tools (Robust control, Sliding mode Observer, Algebric approach,...) in order to improve the security of vehicle. The estimation of tire road force has become an intensive research area as the interest in information technology in vehicles grows. More and more new safety technologies and approaches are introduced in the automotive environment. Therefore, the problem of traction control for ground vehicles is of enormous importance to automotive industry.We split the dynamic model of vehicle into five subsystems regrouped in three blocks and then show and justify the rationale behind the successful splitting. Thesubsystems and the overall system obey to the passivity property. Robust observer are proposed to estimate the road features.
195

Suspension design for off-road construction machines

Rehnberg, Adam January 2011 (has links)
Construction machines, also referred to as engineering vehicles or earth movers, are used in a variety of tasks related to infrastructure development and material handling. While modern construction machines represent a high level of sophistication in several areas, their suspension systems are generally rudimentary or even nonexistent. This leads to unacceptably high vibration levels for the operator, particularly when considering front loaders and dump trucks, which regularly traverse longer distances at reasonably high velocities. To meet future demands on operator comfort and high speed capacity, more refined wheel suspensions will have to be developed. The aim of this thesis is therefore to investigate which factors need to be considered in the fundamental design of suspension systems for wheeled construction machines. The ride dynamics of wheeled construction machines are affected by a number of particular properties specific to this type of vehicle. The pitch inertia is typically high in relation to the mass and wheelbase, which leads to pronounced pitching. The axle loads differ considerably between the loaded and the unloaded condition, necessitating ride height control, and hence the suspension properties may be altered as the vehicle is loaded. Furthermore, the low vertical stiffness of off-road tyres means that changes in the tyre properties will have a large impact on the dynamics of the suspended mass. The impact of these factors has been investigated using analytical models and parameters for a typical wheel loader. Multibody dynamic simulations have also been used to study the effects of suspended axles on the vehicle ride vibrations in more detail. The simulation model has also been compared to measurements performed on a prototype wheel loader with suspended axles. For reasons of manoeuvrability and robustness, many construction machines use articulated frame steering. The dynamic behaviour of articulated vehicles has therefore been examined here, focusing on lateral instabilities in the form of “snaking” and “folding”. A multibody dynamics model has been used to investigate how suspended axles influence the snaking stability of an articulated wheel loader. A remote-controlled, articulated test vehicle in model-scale has also been developed to enable safe and inexpensive practical experiments. The test vehicle is used to study the influence of several vehicle parameters on snaking stability, including suspension, drive configuration and mass distribution. Comparisons are also made with predictions using a simplified linear model. Off-road tyres represent a further complication of construction machine dynamics, since the tyres’ behaviour is typically highly nonlinear and difficult to evaluate in testing due to the size of the tyres. A rolling test rig for large tyres has here been evaluated, showing that the test rig is capable of producing useful data for validating tyre simulation models of varying complexity. The theoretical and experimental studies presented in this thesis contribute to the deeper understanding of a number of aspects of the dynamic behaviour of construction machines. This work therefore provides a basis for the continued development of wheel suspensions for such vehicles. / QC 20110531
196

Dynamic Response Of A Satellite With Flexible Appendages And Its Passive Control

Joseph, Thomas K 12 1900 (has links)
Most present day spacecrafts have large interconnected solar panels. The dynamic behavior of the spacecraft in orbit can be modeled as a free rigid mass with flexible elements attached to it. The natural frequencies of such spacecrafts with deployed solar panels are very low. The low values of the natural frequencies pose difficulties for maneuvering the spacecraft. The control torque required to maneuver the spacecraft is influenced by the flexibility of the solar arrays. The control torque sets up transient oscillations in the flexible solar panels which in turn induces disturbances in the rigid satellite body and the payload within. Therefore the payload operations can be carried out only after the disturbances die out. For any reduction of the above disturbances it is necessary to understand the dynamic behavior of such systems to an applied torque. The present work first studies the nature of the disturbances. The influence of structural parameters on these disturbances is then investigated. Finally, the use of passive damping treatment using viscoelastic material is investigated for the reduction of the disturbances. In order to understand the nature of vibrations induced in the flexible appendages of a satellite during maneuvers, we model the maneuver loads in terms of applied angular acceleration as well as varying torque. The transient decay of the disturbance of the rigid element is characterized by the dynamic characteristics of the flexible panels or appendages. It is shown that by changing the stiffness of the panel the response of the rigid element can be modified. A simple model consisting of an Euler-Bernoulli beam attached to a free mass is next considered. The influence of various parameters of the EulerBernoulli beam in mitigating vibration and thereby the disturbance in the rigid mass is investigated. As the response of the rigid system mounted with the large flexible panels are influenced by the dynamics of the flexible panels, reduction of these disturbances can be achieved by reducing the vibration in the flexible panels. Therefore application of viscoelastic materials for passive damping treatment is investigated. The loss factor of a structure is significantly improved by using constrained viscoelastic layer damping treatment. However providing a constrained layer damping treatment on the entire structure is very inefficient in terms of the additional mass involved. Therefore damping material is applied at suitable optimal locations. In previous studies reported in literature, modal strain energy distribution in the viscoelastic material as well as the base structure is used as a tool to arrive at the optimum location for the damping treatment. It is shown in this study that such locations selected are not the optimum. A new approach is proposed in this study by which both the above shortcomings are overcome. It is shown that use of a parameter that is the ratio of the strain in the viscoelastic material to the angle of flexure is a more reliable measure in arriving at optimal locations for the application of constrained viscoelastic layers. The method considers the deformations in the viscoelastic material and it is shown that significant values of loss factors are achieved by providing material in a small region alone. We also show that loss factor can be improved by providing damping material near the interface region. The loss factor can be further improved by incorporating spacers by using spacer material having higher extensional modulus. Also shown is the fact that loss factor is unaffected by the shear modulus of the spacer material. Experiments have been conducted to validate these results. In a related study we consider honeycomb type flexible structures since in most of the spacecraft applications honeycomb sandwich constructions are employed. But loss factors of sandwich panels with constrained layer damping treatment are seldom discussed in the literature. Use of viscoelastic layers to improve the loss factors of the honeycomb sandwich beams is explored. The results show that the loss factors are enhanced by increasing the inplane stiffness of the constraining layer. These conclusions too are validated by experimental results. Finally a typical satellite with flexible solar panels is considered, and the use of the viscoelastic material for improving the damping is demonstrated.
197

Reinforcement Learning of Dynamic Collaborative Driving

Ng, Luke 20 May 2008 (has links)
Dynamic Collaborative Driving is the concept of decentralized multi-vehicle automated driving where vehicles form dynamic local area networks within which information is shared to build a dynamic data representation of the environment to improve road usage and safety. The vision is to have networks of cars spanning multiple lanes forming these dynamic networks so as to optimize traffic flow while maintaining safety as each vehicle travels to its destinations. A basic requirement of any vehicle participating in dynamic collaborative driving is longitudinal and lateral control. Without this capability, higher-level coordination is not possible. This thesis investigates the issue of the control of an automobile in the context of a Dynamic Collaborative Driving system. Each vehicle involved is considered a complex composite nonlinear system. Therefore a complex nonlinear model of the vehicle dynamics is formulated and serves as the control system design platform. Due to the nonlinear nature of the vehicle dynamics, a nonlinear approach to control is used to achieve longitudinal and lateral control of the vehicle. This novel approach combines the use of reinforcement learning: a modern machine learning technique, with adaptive control and preview control techniques. This thesis presents the design of both the longitudinal and lateral control systems which serves as a basis for Dynamic Collaborative Driving. The results of the reinforcement learning phase and the performance of the adaptive control systems for single automobile performance as well as the performance in a multi-vehicle platoon is presented.
198

Reinforcement Learning of Dynamic Collaborative Driving

Ng, Luke 20 May 2008 (has links)
Dynamic Collaborative Driving is the concept of decentralized multi-vehicle automated driving where vehicles form dynamic local area networks within which information is shared to build a dynamic data representation of the environment to improve road usage and safety. The vision is to have networks of cars spanning multiple lanes forming these dynamic networks so as to optimize traffic flow while maintaining safety as each vehicle travels to its destinations. A basic requirement of any vehicle participating in dynamic collaborative driving is longitudinal and lateral control. Without this capability, higher-level coordination is not possible. This thesis investigates the issue of the control of an automobile in the context of a Dynamic Collaborative Driving system. Each vehicle involved is considered a complex composite nonlinear system. Therefore a complex nonlinear model of the vehicle dynamics is formulated and serves as the control system design platform. Due to the nonlinear nature of the vehicle dynamics, a nonlinear approach to control is used to achieve longitudinal and lateral control of the vehicle. This novel approach combines the use of reinforcement learning: a modern machine learning technique, with adaptive control and preview control techniques. This thesis presents the design of both the longitudinal and lateral control systems which serves as a basis for Dynamic Collaborative Driving. The results of the reinforcement learning phase and the performance of the adaptive control systems for single automobile performance as well as the performance in a multi-vehicle platoon is presented.
199

Predictive Control of Multibody Systems for the Simulation of Maneuvering Rotorcraft

Sumer, Yalcin Faik 18 April 2005 (has links)
Simulation of maneuvers with multibody models of rotorcraft vehicles is an important research area due to its complexity. During the maneuvering flight, some important design limitations are encountered such as maximum loads and maximum turning rates near the proximity of the flight envelope. This increases the demand on high fidelity models in order to define appropriate controls to steer the model close to the desired trajectory while staying inside the boundaries. A framework based on the hierarchical decomposition of the problem is used for this study. The system should be capable of generating the track by itself based on the given criteria and also capable of piloting the model of the vehicle along this track. The generated track must be compatible with the dynamic characteristics of the vehicle. Defining the constraints for the maneuver is of crucial importance when the vehicle is operating close to its performance boundaries. In order to make the problem computationally feasible, two models of the same vehicle are used where the reduced model captures the coarse level flight dynamics, while the fine scale comprehensive model represents the plant. The problem is defined by introducing planning layer and control layer strategies. The planning layer stands for solving the optimal control problem for a specific maneuver of a reduced vehicle model. The control layer takes the resulting optimal trajectory as an optimal reference path, then tracks it by using a non-linear model predictive formulation and accordingly steers the multibody model. Reduced models for the planning and tracking layers are adapted by using neural network approach online to optimize the predictive capabilities of planner and tracker. Optimal neural network architecture is obtained to augment the reduced model in the best way. The methodology of adaptive learning rate is experimented with different strategies. Some useful training modes and algorithms are proposed for these type of applications. It is observed that the neural network increased the predictive capabilities of the reduced model in a robust way. The proposed framework is demonstrated on a maneuvering problem by studying an obstacle avoidance example with violent pull-up and pull-down.
200

Control System and Simulation Design for an All-Wheel-Drive Formula SAE Car Using a Neural Network Estimated Slip Angle Velocity

Beacock, Benjamin 12 September 2012 (has links)
In 2004, students at the University of Guelph designed and constructed an all-wheel-drive Formula SAE vehicle for competition. It utilized an electronically-controlled, hydraulic-actuated limited slip center coupling from Haldex Traction Ltd, to transfer torque to the front wheels. The initial control system design was not comprehensively conceived, so there was a need for a thoroughly developed control system for the all-wheel-drive actuator augmented with commonly available sensors and a low cost controller. This thesis presents a novel all-wheel-drive active torque transfer controller using a neural network estimated slip angle velocity. This controller specifically targets a racing vehicle by allowing rapid direction changes for maneuverability but damping slip angle changes for increased controllability. The slip angle velocity estimate was able to track the actual simulated value it was trained against with excellent phase matching but with some offsets and phantom spikes. Using the estimated slip angle velocity for control realized smooth control output, excellent stability, and a fast turn-in yaw response on par with rear-wheel-drive configurations. A full vehicle simulation with software-in-the-loop testing for control software was also developed to aid the system design process and avoid vehicle run time for tuning. This design flow should significantly decrease development time for controls algorithm work and help increase innovation within the team.

Page generated in 0.0598 seconds