• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 26
  • 26
  • 9
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

[en] ON MACHINE LEARNING TECHNIQUES TOWARD PATH LOSS MODELING IN 5G AND BEYOND WIRELESS SYSTEMS / [pt] SOBRE TÉCNICAS DE APRENDIZADO DE MÁQUINA EM DIREÇÃO À MODELAGEM DE PERDA DE PROPAGAÇÃO EM SISTEMAS SEM FIO 5G E ALÉM

YOIZ ELEDUVITH NUNEZ RUIZ 09 November 2023 (has links)
[pt] A perda de percurso (PL) é um parâmetro essencial em modelos de propagação e crucial na determinação da área de cobertura de sistemas móveis. Os métodos de aprendizado de máquina (ML) tornaram-se ferramentas promissoras para a previsão de propagação de rádio. No entanto, ainda existem alguns desafios para sua implantação completa, relacionados à seleção das entradas mais significativas do modelo, à compreensão de suas contribuições para as previsões do modelo e à avaliação adicional da capacidade de generalização para amostras desconhecidas. Esta tese tem como objetivo projetar modelos de PL baseados em ML otimizados para diferentes aplicações das tecnologias 5G e além. Essas aplicações abrangem links de ondas milimétricas (mmWave) para ambientes indoor e outdoor na faixa de frequência de 26,5 a 40 GHz, cobertura de macrocélulas no espectro sub-6 GHz e comunicações veiculares usando campanhas de medições desenvolvidas em CETUC, Rio de Janeiro, Brazil. Vários algoritmos de ML são explorados, como redes neurais artificiais (ANN), regressão de vetor de suporte (SVR), floresta aleatória (RF) e aumento de árvore de gradiente (GTB). Além disso, estendemos dois modelos empíricos para mmWave com previsão de PL melhorada. Propomos uma metodologia para seleção robusta de modelos de ML e uma metodologia para selecionar os preditores mais adequados para as máquinas consideradas com base na melhoria de desempenho e na interpretabilidade do modelo. Além disso, para o canal veículo-veículo (V2V), uma técnica de rede neural convolucional (CNN) também é proposta usando uma abordagem de aprendizado por transferência para lidar com conjuntos de dados pequenos. Os testes de generalização propostos mostram a capacidade dos modelos de ML de aprender o padrão entre as entradas do modelo e a PL, mesmo em ambientes e cenários mais desafiadores de amostras desconhecidas. / [en] Path loss (PL) is an essential parameter in propagation models and critical in determining mobile systems’ coverage area. Machine learning (ML) methods have become promising tools for radio propagation prediction. However, there are still some challenges for its full deployment, concerning to selection of the most significant model s inputs, understanding their contributions to the model s predictions, and a further evaluation of the generalization capacity for unknown samples. This thesis aims to design optimized ML-based PL models for different applications for the 5G and beyond technologies. These applications encompass millimeter wave (mmWave) links for indoor and outdoor environments in the frequency band from 26.5 to 40 GHz, macrocell coverage in the sub-6 GHz spectrum, and vehicular communications using measurements campaign carried out by the Laboratory of Radio-propagation, CETUC, in Rio de Janeiro, Brazil. Several ML algorithms are exploited, such as artificial neural network (ANN), support vector regression (SVR), random forest (RF), and gradient tree boosting (GTB). Furthermore, we have extended two empirical models for mmWave with improved PL prediction. We proposes a methodology for robust ML model selection and a methodology to select the most suitable predictors for the machines considered based on performance improvement and the model’s interpretability. In adittion, for the vehicle-to-vehicle (V2V) channel, a convolutional neural network (CNN) technique is also proposed using a transfer learning approach to deal with small datasets. The generalization tests proposed shows the ability of the ML models to learn the pattern between the model’s inputs and PL, even in more challenging environments and scenarios of unknown samples.
22

Vehicular Joint Radar-Communication in mmWave Bands using Adaptive OFDM Transmission

Ozkaptan, Ceyhun Deniz January 2022 (has links)
No description available.
23

Impacts of misbehavior in Intelligent Transportation Systems (ITS) : The case of cooperative maneuvers / Påverkan av felaktigt beteende i Intelligenta Transportsystem (ITS) : Fallet med kooperativa manövrar

Henriksson, Andreas January 2022 (has links)
Connected and autonomous vehicles are emerging technologies that have fostered the Intelligent Transportation System (ITS). ITS has the objective of optimizing traffic safety, mobility, and fuel consumption. To achieve this, a range of different services are provided that utilize communication in a vehicular network. One of these services that has received a lot of attention lately due to its ongoing standardization is the Maneuver Coordination Service (MCS). MCS has already shown great potential in the support of complex traffic areas, also called Transition Area (TA), where vehicles must cooperate to avoid Transition of Controls (ToCs). ITS-services often rely on communicated data; small errors, such as inaccessible or incorrect data, can cause the system to behave incorrectly. Signal interference (jamming) can cause communication interruptions, making vehicles unaware of each other. Incorrect data can be intentional due to data injection attacks, but also unintentional due to malfunctioning sensors, making vehicles incorrectly aware of each other. Incorrect behavior in systems such as ITS can lead to traffic congestion or even life-threatening collisions. This study focuses on MCS and examines traffic behavior when the service, in a generic traffic scenario, is subjected to jamming and falsification attacks with a variety of strategies (negative and positive speed, acceleration and position offset). We considered external attackers (not authenticated) that can disrupt communication, as well as internal attackers (authenticated) that are limited to tampering with outgoing data. Through severe collisions and travel time delays, the results show an impact on both safety and mobility. The results also show that different attacks with different impacts on the adversary can cause similar effects on the traffic, thus allowing the adversary to choose attacks based on the desired impact and its rationality, i.e. its willingness to be part of the impact. The study also proposes an extension to an already proposed Maneuver Coordination Protocol (MCP). We show that our extended MCP can be beneficial in avoiding dangerous maneuvers that could lead to collisions with cars in the blind spot. / Uppkopplade och autonoma fordon är framväxande teknologier som har främjat Intelligenta Transporteringssystem (ITS). ITS har som mål att optimera trafiksäkerhet, mobilitet och bränsleförbrukning. För att uppnå detta tillhandahålls en rad olika tjänster som utnyttjar kommunikation i ett fordonsnät. En av dessa tjänster som har fått mycket uppmärksamhet under den senaste tiden, tack vare sin pågående standardisering, är Manöverkoordinationtjänsten (MCS). MCS har redan visat stor potential för att stödja komplexa trafikområden, även kallade Övergångsområden (TA), där fordon måste samarbeta för att undvika kontrollövergångar (ToCs). ITS-tjänster förlitar sig ofta på kommunicerad data; små fel, som otillgängliga eller felaktiga data, kan göra att systemet beter sig felaktigt. Signalstörningar kan orsaka kommunikationsavbrott, vilket gör fordon omedvetna om varandra. Felaktig data kan vara avsiktliga på grund av datainjektionsattacker, men också oavsiktliga på grund av felaktiga sensorer, vilket gör fordon felaktigt medvetna om varandra. Felaktigt beteende i system som ITS kan leda till trafikstockningar eller till och med livshotande kollisioner. Denna studie fokuserar på MCS och undersöker trafikbeteendet när tjänsten, i ett generiskt trafikscenario, utsätts för signalstörningar och förfalskningsattacker med en mängd olika strategier (negativ och positiv hastighet, acceleration och positionsförskjutning). Vi tog hänsyn till externa angripare (ej autentiserade) som kan störa kommunikationen, såväl som interna angripare (autentiserade) som är begränsade till att manipulera utgående data. Genom allvarliga kollisioner och restidsförseningar visar resultaten en inverkan på både säkerhet och mobilitet. Resultaten visar också att olika attacker med olika inverkan på angriparen kan orsaka liknande effekter på trafiken, vilket gör att angriparen kan välja attacker baserat på den önskade effekten och rationaliteten, d.v.s. dens villighet att vara en del av påverkan. Studien föreslår också en utökning av en redan föreslagen MCP. Vi visar att vårt utökade MCP kan vara till nytta för att undvika farliga manövrar som kan leda till kollisioner med bilar i döda vinkeln.
24

Efficient, Scalable and Secure Vehicular Communication System : An Experimental Study

Singh, Shubhanker January 2020 (has links)
Awareness of vehicles’ surrounding conditions is important in today’s intelligent transportation system. A wide range of effort has been put in to deploy Vehicular Communication (VC) systems to make driving conditions safer and more efficient. Vehicles are aware of their surroundings with the help of authenticated safety beacons in VC systems. Since vehicles act according to the information conveyed by such beacons, verification of beacons plays an important role in becoming aware of and predicting the status of the sender vehicle. The idea of implementing secure mechanisms to deal with a high rate of incoming beacons and processing them with high efficiency becomes a very important part of the whole VC network. The goal of this work was to implement a scheme that deals with a high rate of the incoming beacon, preserve non-repudiation of the accepted messages which contains information about the current and near-future status of the sender vehicle, and at the same time keep the computation overhead as low as possible. Along with this, maintaining user privacy from a legal point of view as well as from a technical perspective by implementing privacy-enhancing technologies. These objectives were achieved by the introduction of Timed Efficient Stream Loss-Tolerant Authentication (TESLA), periodic signature verification, and cooperative verification respectively. Four different scenarios were implemented and evaluated, starting and building upon the baseline approach. Each approach addressed the problems that were aimed at this work and results show improved scalability and efficiency with the introduction of TESLA, periodic signature verification, and cooperative verification. / Medvetenheten om fordons omgivande förhållanden är viktig i dagens intelligenta transportsystem. Ett stort antal ansträngningar har lagts ned för att distribuera VC system för att göra körförhållandena säkrare och effektivare. Fordon är medvetna om sin omgivning med hjälp av autentiserade säkerhetsfyrar i VC system. Eftersom fordon agerar enligt den information som förmedlas av sådana fyrar, spelar verifiering av fyrar en viktig roll för att bli medveten om och förutsäga avsändarfordonets status. Idén att implementera säkra mekanismer för att hantera en hög frekvens av inkommande fyrar och bearbeta dem med hög effektivitet blir en mycket viktig del av hela VC nätverket. Målet med detta arbete var att implementera ett schema som behandlar en hög hastighet för det inkommande fyren, bevara icke-förkastelse av de accepterade meddelandena som innehåller information om den aktuella och närmaste framtida statusen för avsändarfordonet och samtidigt håll beräkningen så låg som möjligt. Tillsammans med detta upprätthåller användarnas integritet ur juridisk synvinkel såväl som ur ett tekniskt perspektiv genom att implementera integritetsförbättrande teknik. Dessa mål uppnåddes genom införandet av TESLA, periodisk signatur verifiering respektive samarbets verifiering. Fyra olika scenarier implementerades och utvärderades med utgångspunkt från baslinjemetoden. Varje tillvägagångssätt tog upp de problem som riktades mot detta arbete och resultaten visar förbättrad skalbarhet och effektivitet med införandet av TESLA, periodisk signatur verifiering och samarbets verifiering.
25

Improving Vehicular ad hoc Network Protocols to Support Safety Applications in Realistic Scenarios

Martínez Domínguez, Francisco José 20 January 2011 (has links)
La convergencia de las telecomunicaciones, la informática, la tecnología inalámbrica y los sistemas de transporte, va a facilitar que nuestras carreteras y autopistas nos sirvan tanto como plataforma de transporte, como de comunicaciones. Estos cambios van a revolucionar completamente cómo y cuándo vamos a acceder a determinados servicios, comunicarnos, viajar, entretenernos, y navegar, en un futuro muy cercano. Las redes vehiculares ad hoc (vehicular ad hoc networks VANETs) son redes de comunicación inalámbricas que no requieren de ningún tipo de infraestructura, y que permiten la comunicación y conducción cooperativa entre los vehículos en la carretera. Los vehículos actúan como nodos de comunicación y transmisores, formando redes dinámicas junto a otros vehículos cercanos en entornos urbanos y autopistas. Las características especiales de las redes vehiculares favorecen el desarrollo de servicios y aplicaciones atractivas y desafiantes. En esta tesis nos centramos en las aplicaciones relacionadas con la seguridad. Específicamente, desarrollamos y evaluamos un novedoso protocol que mejora la seguridad en las carreteras. Nuestra propuesta combina el uso de información de la localización de los vehículos y las características del mapa del escenario, para mejorar la diseminación de los mensajes de alerta. En las aplicaciones de seguridad para redes vehiculares, nuestra propuesta permite reducir el problema de las tormentas de difusión, mientras que se mantiene una alta efectividad en la diseminación de los mensajes hacia los vehículos cercanos. Debido a que desplegar y evaluar redes VANET supone un gran coste y una tarea dura, la metodología basada en la simulación se muestra como una metodología alternativa a la implementación real. A diferencia de otros trabajos previos, con el fin de evaluar nuestra propuesta en un entorno realista, en nuestras simulaciones tenemos muy en cuenta tanto la movilidad de los vehículos, como la transmisión de radio en entornos urbanos, especialmente cuando los edificios interfieren en la propagación de la señal de radio. Con este propósito, desarrollamos herramientas para la simulación de VANETs más precisas y realistas, mejorando tanto la modelización de la propagación de radio, como la movilidad de los vehículos, obteniendo una solución que permite integrar mapas reales en el entorno de simulación. Finalmente, evaluamos las prestaciones de nuestro protocolo propuesto haciendo uso de nuestra plataforma de simulación mejorada, evidenciando la importancia del uso de un entorno de simulación adecuado para conseguir resultados más realistas y poder obtener conclusiones más significativas. / Martínez Domínguez, FJ. (2010). Improving Vehicular ad hoc Network Protocols to Support Safety Applications in Realistic Scenarios [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/9195
26

[en] ON MACHINE LEARNING TECHNIQUES TOWARD PATH LOSS MODELING IN 5G AND BEYOND WIRELESS SYSTEMS / [pt] SOBRE TÉCNICAS DE APRENDIZADO DE MÁQUINA EM DIREÇÃO À MODELAGEM DE PERDA DE PROPAGAÇÃO EM SISTEMAS SEM FIO 5G E ALÉM

YOIZ ELEDUVITH NUNEZ RUIZ 09 November 2023 (has links)
[pt] A perda de percurso (PL) é um parâmetro essencial em modelos de propagação e crucial na determinação da área de cobertura de sistemas móveis. Osmétodos de aprendizado de máquina (ML) tornaram-se ferramentas promissoras para a previsão de propagação de rádio. No entanto, ainda existem algunsdesafios para sua implantação completa, relacionados à seleção das entradasmais significativas do modelo, à compreensão de suas contribuições para asprevisões do modelo e à avaliação adicional da capacidade de generalizaçãopara amostras desconhecidas. Esta tese tem como objetivo projetar modelosde PL baseados em ML otimizados para diferentes aplicações das tecnologias5G e além. Essas aplicações abrangem links de ondas milimétricas (mmWave)para ambientes indoor e outdoor na faixa de frequência de 26,5 a 40 GHz,cobertura de macrocélulas no espectro sub-6 GHz e comunicações veicularesusando campanhas de medições desenvolvidas em CETUC, Rio de Janeiro,Brazil. Vários algoritmos de ML são explorados, como redes neurais artificiais(ANN), regressão de vetor de suporte (SVR), floresta aleatória (RF) e aumentode árvore de gradiente (GTB). Além disso, estendemos dois modelos empíricospara mmWave com previsão de PL melhorada. Propomos uma metodologiapara seleção robusta de modelos de ML e uma metodologia para selecionar ospreditores mais adequados para as máquinas consideradas com base na melhoria de desempenho e na interpretabilidade do modelo. Além disso, para o canalveículo-veículo (V2V), uma técnica de rede neural convolucional (CNN) também é proposta usando uma abordagem de aprendizado por transferência paralidar com conjuntos de dados pequenos. Os testes de generalização propostosmostram a capacidade dos modelos de ML de aprender o padrão entre as entradas do modelo e a PL, mesmo em ambientes e cenários mais desafiadoresde amostras desconhecidas. / [en] Path loss (PL) is an essential parameter in propagation models and critical in determining mobile systems coverage area. Machine learning (ML) methods have become promising tools for radio propagation prediction. However, there are still some challenges for its full deployment, concerning to selection of the most significant model s inputs, understanding their contributions to the model s predictions, and a further evaluation of the generalization capacity for unknown samples. This thesis aims to design optimized ML-based PL models for different applications for the 5G and beyond technologies. These applications encompass millimeter wave (mmWave) links for indoor and outdoor environments in the frequency band from 26.5 to 40 GHz, macrocell coverage in the sub-6 GHz spectrum, and vehicular communications using measurements campaign carried out by the Laboratory of Radio-propagation, CETUC, in Rio de Janeiro, Brazil. Several ML algorithms are exploited, such as artificial neural network (ANN), support vector regression (SVR), random forest (RF), and gradient tree boosting (GTB). Furthermore, we have extended two empirical models for mmWave with improved PL prediction. We proposes a methodology for robust ML model selection and a methodology to select the most suitable predictors for the machines considered based on performance improvement and the model s interpretability. In adittion, for the vehicle-to-vehicle (V2V) channel, a convolutional neural network (CNN) technique is also proposed using a transfer learning approach to deal with small datasets. The generalization tests proposed shows the ability of the ML models to learn the pattern between the model’s inputs and PL, even in more challenging environments and scenarios of unknown samples.

Page generated in 0.4147 seconds