• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 9
  • 2
  • 1
  • 1
  • Tagged with
  • 41
  • 23
  • 20
  • 10
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

A model of the neural basis of predecisional processes: the fronto-limbic information acquisition network

Taber-Thomas, Bradley Charles 01 December 2011 (has links)
Decision makers flexibly deploy decision-making strategies based on the specific features of the problems they face (Ford, Schmitt, Schechtman, Hults, & Doherty, 1989; Payne, Bettman, & Johnson, 1993). However, research on the neuroscience of decision making has focused on a "policy capture" approach that utilizes static decision problems to study the relationships between input (the problem presented), output (the choices made), and the brain. Since the decision problems are prepackaged, this approach does not provide information about the neural bases of predecisional processes critical for flexible decision making, such as selecting an appropriate decision-making strategy and dynamically acquiring and integrating the information needed to progress toward choice. The aim of the current project is to use the lesion method to explore the neural bases of predecisional processes. The fronto-limbic information acquisition network (FLIAN) is proposed as a neural framework critical for predecisional processes in flexible decision making. According to the FLIAN model, the ventromedial prefrontal cortex (vmPFC) represents the decision problem as currently perceived (i.e., the decision space), which is the basis for selecting a decision strategy via interactions with limbic structures. The vmPFC implements the strategy through the coordination of attribute-based information acquisition induced by the amygdala and relational, option-based acquisition induced by the hippocampus. In Chapter 1, the literature pertinent to FLIAN structures is reviewed, including the neuroanatomical and functional backgrounds of those structures, their roles in decision making, and their potential roles in predecisional processes. Chapter 2 provides a review of the behavioral literature on predecisional processes and outlines the FLIAN model in detail. Chapters 3 and 4 present studies that test, and provide partial support for, the FLIAN model using the lesion method and information board tasks. As predicted, the hippocampus is shown to be critical for relational, option-based information acquisition. The vmPFC is shown to be critical for determining how attributes are weighted in the decision space representation and for organizing predecisional behavior. The amygdala was not found to play its role in attribute-based acquisition, but previous studies do support this function and further research is warranted on the role of the amygdala, as well as the hippocampus and vmPFC, in predecisional processes. Future research should also explore the consequences of abnormal predecisional functioning for social behavior, memory, and emotion processing.
22

Elucidating mechanisms by which substance P in the RVM contributes to the maintenance of pain following inflammatory injury

Maduka, Uche Patrick 01 December 2013 (has links)
Chronic pain is a major healthcare concern that directly affects over one hundred million people in the United States alone. While current treatment options like opioids and NSAIDs are effective, they are with significant drawbacks that prevent long term use. It is important to identify and understand new druggable targets for the treatment of pain. Recent findings have demonstrated substance P functions in the RVM to maintain hypersensitivity to noxious heat stimuli in models of persistent peripheral inflammatory injury in a manner dependent on presynaptic NMDA receptors. What remains unclear is how substance P assumes this pronociceptive role following peripheral inflammatory injury. The experiments detailed in this thesis investigated whether the levels and or release of substance P in the RVM was altered following peripheral inflammatory injury. The effect of peripheral inflammatory injury on levels of substance P in the RVM was tested at several time points. The data show that there were no changes in substance P levels in the ipsilateral or contralateral RVM of CFA injected rats compared to their saline controls at any of the time points tested. To assess whether changes in substance P levels occurred in a subset of neurons within the RVM, computer aided densitometry analysis was used to measure substance P immunoreactivity in sections from the RVM of rats treated with CFA or saline. Substance P immunoreactivity was increased in the ipsilateral RVM of the CFA group compared to the corresponding saline sections at the 4 day, but not the 2 week time point. No other changes were observed. Electron microscopy was used to demonstrate the presence of the NMDA receptor and substance P on the same axon terminals within the RVMs of rats treated with either CFA or saline. This colocalization is significant because it identifies NMDA receptors in position to regulate the release of substance P from axon terminals in the RVM. There were no obvious differences in the degree of colocalization between CFA and saline groups. Functional experiments were devised that tested whether substance P release (basal and evoked) in the RVM was increased following peripheral inflammatory injury, and whether said release was regulated by NMDA receptors. The data show that neither basal nor evoked (potassium or veratridine) release was increased following peripheral inflammatory injury. NMDA was able to facilitate the release of substance P in both the CFA and saline treatment groups, but the facilitation was not different between groups. In the absence of any depolarization stimulus, NMDA was unable to elicit any release of substance P beyond basal values. All told, the data show substance P levels in the RVM are not altered by peripheral inflammatory injury. Additionally, neither basal nor evoked release of substance P is altered by peripheral inflammatory injury. The data provide functional and anatomical evidence for modulation of substance P release by glutamate acting at presynaptic NMDA receptors, but do not support the idea of differential modulation of substance P release following peripheral inflammatory injury.
23

Social inference and the evolution of the human brain

Koscik, Timothy Richard 01 December 2010 (has links)
The evolutionary forces that led to the unprecedented expansion of the human brain and the extreme cognitive prowess possessed by humans have always attracted a great deal of attention from the scientific community. Presented here is a novel theoretical perspective, where the driving force on human brain evolution was the need for enhanced ability to infer social values of conspecifics in the face of degradation and loss of chemosensory signalling mechanisms necessary for social communication present in most mammals. The lack of chemosensory communication of biologically relevant information between humans in the face of the need to make adaptive and accurate social evaluations, led to an exaption of mammalian chemosensory brain regions for the more complex task of inferring social values from behavioural cues that are variable, ambiguous, or otherwise difficult to detect and interpret. This change in social processing from perceptual evaluation to inferential computation placed a premium on cognitive capacity, thus selecting for larger more powerful brains. These selective processes would have left an indelible mark on the human brain, where the human homologues of regions involved in mammalian conspecific chemical communication, in particular the target regions of this study the amygdala and ventromedial prefrontal cortex (VMPC), should be involved in the processing of biologically relevant information and social inference. Several experiments were conducted to examine the role of these brain regions in social inferential processing using the lesion deficit method. First, given that conspecific chemical communication is particularly relevant for biologically imperative evaluation for the purposes of reproduction, VMPC and amygdala damage may result in abnormal mate-related decisions. Second, normal social attributions exhibit the correspondence bias, however damage to the target regions may result in an abnormal lack correspondence bias. Third, the current hypothesis is contrasted with another leading hypothesis, the Social Brain Hypothesis whose proponents predict a relationship between group-size and social cognition. Finally, if the target brain regions are truly integral in inferring social information, then damage to these regions will interfere with the ability to utilize transitive inference in social situations, and potentially in using transitive inference in general. Damage to the target areas produces limited effects on mate-related decisions and preferences. However, the current hypothesis may suggest that the target brain regions are only involved when the problem is inferential in nature rather than simpler perception of social information. In support of this notion, damage to the target regions results in a lack of the correspondence bias when making economic decisions. This alteration in social attributions actually leads to more `rational' decision-making in this context. In contrast to the predictions of the Social Brain Hypothesis, damage to the target regions produces no observed reduction in social group size, nor is there any observed relationship between perspective-taking ability and group size. Finally, damage to the VMPC produces deficits in using transitive inference in a non-social context perhaps hinting at the underlying computations of this region in inferring social information. In conclusion, it appears that the notion that the human brain regions that have been exapted from their duties in chemosensation and communication in mammalian brains has at least some validity. Moreover, these brain regions have been shifted by evolution to a more computationally complex process of social inference possibly providing the push toward larger and more powerful human brains.
24

Sex Differences in Morphine Analgesia and the Descending Modulation of Pain

Loyd, Dayna Ruth 21 August 2008 (has links)
Morphine is the most widely prescribed opiate for alleviation of persistent pain; however, it is becoming increasingly clear that morphine is less potent in women compared to men. Morphine primarily binds mu opioid receptors, which are densely localized in the midbrain periaqueductal gray (PAG). Anatomical and physiological studies conducted in the 1960s identified the PAG, and its projections to the rostral ventromedial medulla (RVM) and spinal cord dorsal horn, as an essential neural circuit mediating opioid-based analgesia. Remarkably, the majority of studies since then were conducted in males with the implicit assumption that this circuit was the same in females; this is not the case. It is now well established that morphine produces greater analgesia in males compared to females in a wide range of vertebrates, however, the mechanism(s) driving this sex difference is not clear. Our recent studies indicate that two factors appear to be contributing to the sexually dimorphic effects of morphine. First, there are sex differences in the anatomy and physiology of the descending inhibitory pathway on which morphine acts to produce analgesia. Specifically, the projections from the PAG to the RVM are sexually dimorphic and activated to a greater degree by both inflammatory pain and systemic morphine in males. In the absence of pain, the PAG-RVM circuit is activated to a greater degree in males compared to females, while this activation steadily declines during the development of tolerance in males only. We also have evidence of a sexually dimorphic expression of mu opioid receptor within the PAG that appears to contribute to sex differences in morphine potency. Microinjection of morphine directly into the PAG produces significantly greater analgesia in males, indicating that the PAG is sufficient for eliciting this sexually dimorphic behavior. Furthermore, mu opioid receptor-expressing PAG neurons are necessary for eliciting a sexually dimorphic response to morphine as lesioning mu opioid receptor-expressing neurons attenuates analgesia in males only. Together, these data indicate that the PAG-RVM pathway and mu opioid receptor expression in the PAG is sexually dimorphic and provides a primary mechanism for sex differences in morphine potency.
25

Sex Differences in Morphine Analgesia and the Descending Modulation of Pain

Loyd, Dayna Ruth 21 August 2008 (has links)
Morphine is the most widely prescribed opiate for alleviation of persistent pain; however, it is becoming increasingly clear that morphine is less potent in women compared to men. Morphine primarily binds mu opioid receptors, which are densely localized in the midbrain periaqueductal gray (PAG). Anatomical and physiological studies conducted in the 1960s identified the PAG, and its projections to the rostral ventromedial medulla (RVM) and spinal cord dorsal horn, as an essential neural circuit mediating opioid-based analgesia. Remarkably, the majority of studies since then were conducted in males with the implicit assumption that this circuit was the same in females; this is not the case. It is now well established that morphine produces greater analgesia in males compared to females in a wide range of vertebrates, however, the mechanism(s) driving this sex difference is not clear. Our recent studies indicate that two factors appear to be contributing to the sexually dimorphic effects of morphine. First, there are sex differences in the anatomy and physiology of the descending inhibitory pathway on which morphine acts to produce analgesia. Specifically, the projections from the PAG to the RVM are sexually dimorphic and activated to a greater degree by both inflammatory pain and systemic morphine in males. In the absence of pain, the PAG-RVM circuit is activated to a greater degree in males compared to females, while this activation steadily declines during the development of tolerance in males only. We also have evidence of a sexually dimorphic expression of mu opioid receptor within the PAG that appears to contribute to sex differences in morphine potency. Microinjection of morphine directly into the PAG produces significantly greater analgesia in males, indicating that the PAG is sufficient for eliciting this sexually dimorphic behavior. Furthermore, mu opioid receptor-expressing PAG neurons are necessary for eliciting a sexually dimorphic response to morphine as lesioning mu opioid receptor-expressing neurons attenuates analgesia in males only. Together, these data indicate that the PAG-RVM pathway and mu opioid receptor expression in the PAG is sexually dimorphic and provides a primary mechanism for sex differences in morphine potency.
26

Efeitos da administração de canabidiol no CPFmv de ratos submetidos ao teste do nado forçado / Effects of cannabidiol administration into the vmPFC of rats submitted to the forced swimming test

Ariandra Guerini Sartim 19 March 2013 (has links)
A administração sistêmica de canabidiol (CBD), o principal constituinte não psicomimético da Cannabis sativa, induz efeito antidepressivo em modelos préclínicos. O mecanismo de ação do canabidiol, no entanto, permanece pouco conhecido, podendo envolver a ativação de receptores serotoninérgicos do tipo 1A (5-HT1A). Ademais, as estruturas encefálicas envolvidas nesses efeitos permanecem desconhecidas. O córtex pré-frontal medial ventral (CPFmv), dividido em infra-límbico (IL) e pré-límbico (PL), recebe densa inervação serotoninérgica e desempenha importante papel na modulação da resposta emocional ao estresse e na neurobiologia da depressão. Dessa forma, o objetivo do presente trabalho foi avaliar a hipótese de que a administração de canabidiol no CPFmv, diferenciado em PL e IL, produz efeito tipo-antidepressivo por meio da ativação de receptores 5- HT1A. Para tanto, ratos Wistar canulados bilateralmente no CPFmv, receberam CBD (10, 30, 60 nmol/0,2?l) ou veículo intra-PL e CBD (30, 45 e 60nmol/0,2?l) ou veículo intra-IL e foram submetidos ao teste do nado forçado ou ao teste do campo aberto. Outro grupo de animais recebeu microinjeção (intra PL ou IL) do agonista de receptores 5-HT1A, 8-OH-DPAT (5, 10nmol/0,2?l) e foram submetidos aos mesmos testes. Um grupo adicional recebeu um antagonista 5-HT1A, WAY1006365 (10, 30nmol/0,2?l), seguido pela administração de 8-OH-DPAT (10nmol0,2?l) ou CBD (10 nmol0,2?l) intra-PL, ou 8-OH-DPAT (10nmol0,2?l) ou CBD (45 nmol0,2?l) intra-IL, e avaliados no teste do nado forçado. Os resultados demonstraram que a administração de CBD e de 8-OH-DPAT, intra-PL e intra-IL, reduziu significativamente o tempo de imobilidade no teste do nado forçado, um efeito tipoantidepressivo, sem alterar a atividade locomotora dos animais no teste do campo aberto. Além disso, a administração de WAY100635 intra-PL e intra-IL não alterou o tempo de imobilidade per se, mas foi capaz de bloquear os efeitos da administração do CBD e do 8-OH-DPAT. Esses resultados sugerem que a administração local do CBD no CPFmv induz efeito tipo-antidepressivo por meio da ativação de receptores 5-HT1A. Portanto, é possível que o CPFmv esteja envolvido no efeito tipoantidepressivo induzido pelo CBD. / Systemic administration of cannabidiol (CBD), the main non-psychotomimetic constituent of Cannabis sativa, induces antidepressant-like effects in pre-clinical models. The mechanism of action of Cannabidiol, which remains poorly understood, may involve serotonergic type 1A receptors activation (5-HT1A). Furthermore, the brain structures involved in these effects are still unknown. The ventral medial prefrontal cortex (vmPFC), divided in infra-limbic (IL) and pre-limbic (PL) subregions, receives dense serotonergic innervation and plays an important role in the modulation of emotional responses to stress and in the neurobiology of depression. Thus, the aim of this study was evaluate the hypothesis that the administration of cannabidiol into the vmPFC, differentiated into IL and PL, would induce antidepressant-like effect by activating 5-HT1A receptors. Therefore, male Wistar rats with cannulae bilaterally implanted into the Il and PL were given CBD (10, 30, 45, 60 nmol/0,2?l) or vehicle and were submitted to the forced swimming test or to the open field test. Another group of animals received microinjections (intra PL or IL) of the 5- HT1A agonist 8-OH-DPAT (5, 10nmol/0,2?l) and was submitted to the same tests. An additional group received an 5-HT1A antagonist, WAY100635 (10, 30 nmol/0,2?l.), followed by the administration of 8-OH-DPAT (10 nmol/0,2?l) or CBD (10 nmol0,2?l) intra-PL, or 8-OH-DPAT (10nmol0,2?l) or CBD (45 nmol0,2?l) intra- IL, and avaluated in the forced swimming test. The results showed that CBD and 8- OH-DPAT administration, intra-PL and intra-IL, significantly reduced the immobility time in the forced swimming test, an antidepressant-like effect, without changing the locomotor activity of the animals in the open field test. Moreover, the administration of WAY100635, intra-PL and intra-IL, did not change the immobility time per se, but blocked the CBD- and 8-OH-DPAT-induced effects. These results suggest that the local administration of CBD into the vmPFC induces antidepressant-like effects through the activation of 5-HT1A receptors. Therefore, it is possible that the vmPFC is involved in CBD-induced antidepressant-like effect.
27

The effects of ventromedial prefrontal cortex damage on interpersonal coordination in social interaction

Gupta, Rupa 01 May 2012 (has links)
Conversation is a highly interactive and coordinated effort between interactants. For example, interactants often mimic the behaviors and speech of one another and coordinate the timing of behaviors, or interactional synchrony. Despite being affected in certain neurological and psychiatric disorders, the neural mechanisms underlying these processes are not understood. The goal of this study is to understand the role of the ventromedial prefrontal cortex (vmPFC), an area of the brain involved in social and emotional behavior, for interpersonal coordination, including mimicry and interactional synchrony. To test the role of the vmPFC for mimicry, normal comparison (NC), brain damaged comparison (BDC), and participants with vmPFC damage interacted in two sessions with a research assistant (RA) who was performing a target behavior (1st session: nodding, 2nd session: face touching). The amount of time the participants spent nodding or touching their face in each session was recorded. NC and BDC participants tended to mimic the partner and nodded slightly more in the session in which the RA was nodding, and touched their face slightly more in the session in which the RA was touching their face. In contrast, vmPFC patients showed no difference in their behaviors in either session, suggesting that they were not influenced by the partner's behaviors and did not mimic them. In a second experiment, all of the above participant groups had a naturalistic conversation with an unfamiliar interactional partner. The conversational data were analyzed for numerous aspects of interpersonal coordination, including convergence of number of words, words per turn and backchannels, reciprocity of self-disclosures, the use of questions, interactional synchrony, and a time series analysis of response latency and speech rate. The vmPFC participants performed consistently worse than NC participants on convergence of words and words per turn, self-disclosures and asking questions. All brain-damaged participants were impaired on aspects of interactional synchrony, and no conclusive results were found for the time series analysis of response latency and speech rate. This study provides support for the hypothesis that the vmPFC is important for interpersonal coordination as the vmPFC group differed significantly from the NC group on the majority of the analyses. The final goal of this study was to understand the effects of traumatic brain injury (TBI) on interpersonal coordination. TBI patients participated in all of the experiments described above and preliminary results showed that they also seemed to be impaired on the mimicry task, and they performed slightly worse than NC participants on many of the interpersonal coordination analyses of the conversational data. This suggests that TBI also does seem to affect certain aspects of interpersonal coordination.
28

Iowa Gambling Task Performance in Overweight Children and Adolescents At-Risk for Obstructive Sleep Apnea

McNally, Kelly A. 06 December 2010 (has links)
No description available.
29

Antisocial Behavior: Roles of Self-Serving Cognitive Distortions and Ventromedial Prefrontal Function

Blount, Matthew Raymond 14 August 2012 (has links)
No description available.
30

The innate defensive behaviour and unconditioned fear-induced antinociception evoked by NMDA receptor activation in the medial hypothalamus are modulated by the intradiencephalic treatment with cannabidiol: the role of CB1 cannabinoid receptor / O comportamento de defesa inato e a antinocicepção induzida pelo medo incondicionado induzidos pela ativação de receptores NMDA no hipotálamo medial são modulados pelo tratamento intradiencefálico com cannabidiol: papel do receptor canabinoide CB1

Khan, Asmat Ullah 15 October 2018 (has links)
The impacts of exogenous cannabinoids, such as the chemical constituents of Cannabis sativa like cannabidiol (CBD), on brain regions having a modest number of cannabinoid receptors, for example, the ventromedial hypothalamus, are not yet surely knew. A few researches have shown evidence that ventromedial hypothalamus (VMH) neurons play a role in modulating innate fear-induced behavioural reactions in rodents submitted to experimental models of panic attack, for example those based on prey versus wild snake confrontation paradigm. The panic attack-like state was also potentially induced in laboratory animals by N-Methyl-D-aspartate (NMDA), an excitatory amino acid, which stimulates neurons that organize defensive behavioural reactions in the central nervous system. Despite the fact that CB1 receptor-mediated endocannabinoid signaling mechanism underlies the antiaversive effect of exogenous anandamide in medial hypothalamus, there is still a lack of morphological evidence to support the distribution of CB1 receptors in the VMH. Henceforth, this study was designed to explore the specific pattern of distribution of the CB1 receptors in the VMH and, subsequently, the implication of these receptors in the endocannabinoidmodulated defensive behavioural responses followed by fear-induced antinociception evoked by NMDA microinjected in the VMH. A stainless steel guide-cannula was embedded in the rodent\'s brain coordinated towards VMH by means of stareotaxic surgery. Three different doses of cannabidiol (CBD) were microinjected in the VMH. The most effective dose was used after the pretreatment with the CB1 receptor-antagonist AM251, followed by NMDA microinjection in the VMH. The outcomes demonstrated that the defensive behavioural responses evoked in response to intra-VMH administration of NMDA (6 nmol) were decreased by intra-hypothalamic microinjections of CBD at the highest dose (100 nmol).These effects, however, were blocked by the administration of the CB1 receptor-antagonist AM251 (100 pmol) in the VMH. In addition, the fear-induced antinociception elicited by VMH chemical stimulation diminished after the VMH treatment with CBD, an effect reversed by the intra-diencephalic pretreatment with AM251. These findings suggested that CBD causes panicolytic-like effects when administered in the VMH, and that antiaversive effect recruits the CB1 receptor-endocannabinoid signaling mechanism in VMH. / O papel dos canabinoides exógenos nas regiões do cérebro com um número modesto de receptores cannabinoides, por exemplo, o hipotálamo ventromedial, ainda não está plenamente esclarecido. Algumas pesquisas de nosso grupo, não obstante, mostraram o hipotálamo ventromedial (HVM) exerce modulação de reações comportamentais provocadas pelo medo inato em animais submetidos a um modelo de ataques de pânico. Crises de pânico foram induzidas em animais de laboratório por N-metil-D-aspartato (NMDA), um aminoácido excitatório que, ao ser microinjetado em estruturas do sistema encefálico de aversão, estimula reações comportamentais defensivas no sistema nervoso central que mimetizam as respostas defensivas eliciadas por roedores confrontados com serpentes. Apesar do mecanismo de sinalização endocanabinoide mediado pelos receptores CB1 desempenhar um papel na modulação da neurotransmissão excitadora e inibitória no SNC, ainda há escassez de evidências morfológicas que embasem a distribuição dos receptores CB1 no HVM. Por conseguinte, este estudo foi idealizado para explorar a forma específica de distribuição dos receptores CB1 no HVM e, posteriormente, estudar a implicação desses receptores na modulação de respostas comportamentais defensivas, seguidas por antinocicepção induzida pelo medo, moduladas por endocanabinoides e evocadas por microinjetação de NMDA no HVM. Uma cânula-guia feita de aço inoxidável foi implantada no cérebro do roedor, e direcionada para o HVM por meio de cirurgia estareotóxica. Três diferentes doses de cannabidiol (CBD) foram microinjetadas no HVM. A dosagem mais eficaz foi utilizada após o pré-tratamento do hipotálamo medial com um antagonista do receptor CB1, o AM251, seguido da microinjeção NMDA no HVM. Os resultados demonstraram que as respostascomportamentais defensivas evocadas em resposta à administração intra-HVM de NMDA (6 nmol) foram diminuídas por microinjeções intra-hipotalâmicas de CBD na dose mais alta (100 nmol). Estes efeitos, no entanto, foram atenuados pela administração do antagonista do receptor CB1, AM251, na dose de 100 pmol no HVM. Além disso, a antinocicepção induzida pelo medo foi atenuada pela administração intra-diencefálica de CBA, o que foi revertido pelo pré-tratamenot do HVM com AM251. Esses dados sugerem que o CBD causa efeitos panicolíticos, quando administrado no HVM, envolvendo o mecanismo de sinalização do receptor CB1-endocannabinoide.

Page generated in 0.0797 seconds