• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 10
  • 5
  • Tagged with
  • 33
  • 13
  • 12
  • 11
  • 9
  • 8
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Conjecturing (and Proving) in Dynamic Geometry after an Introduction of the Dragging Schemes

Baccaglini-Frank, Anna 11 April 2012 (has links) (PDF)
This paper describes some results of a research study on conjecturing and proving in a dynamic geometry environment (DGE), and it focuses on particular cognitive processes that seem to be induced by certain uses of tools available in Cabri (a particular DGE). Building on the work of Arzarello and Olivero (Arzarello et al., 1998, 2002; Olivero, 2002), we have conceived a model describing some cognitive processes that may occur during the production of conjectures and proofs in a DGE and that seem to be related to the use of specific dragging schemes, in particular to the use of the scheme we refer to as maintaining dragging. This paper contains a description of aspects of the theoretical model we have elaborated for describing such cognitive processes, with specific attention towards the role of the dragging schemes, and an example of how the model can be used to analyze students’ explorations.
22

An apt perspective of analysis

Kishore, Nanad, Chandra, Ramesh 02 May 2012 (has links) (PDF)
The discourse presented here is aimed at examining the justification of applications of current analysis to real world problems.
23

On torus homeomorphisms semiconjugate to irrational rotations

Jäger, T., Passeggi, A. 17 April 2020 (has links)
In the context of the Franks–Misiurewicz conjecture, we study homeomorphisms of the two-torus semiconjugate to an irrational rotation of the circle. As a special case, this conjecture asserts uniqueness of the rotation vector in this class of systems. We first characterize these maps by the existence of an invariant ‘foliation’ by essential annular continua (essential subcontinua of the torus whose complement is an open annulus) which are permuted with irrational combinatorics. This result places the considered class close to skew products over irrational rotations. Generalizing a well-known result of Herman on forced circle homeomorphisms, we provide a criterion, in terms of topological properties of the annular continua, for the uniqueness of the rotation vector. As a byproduct, we obtain a simple proof for the uniqueness of the rotation vector on decomposable invariant annular continua with empty interior. In addition, we collect a number of observations on the topology and rotation intervals of invariant annular continua with empty interior.
24

Onsager's Conjecture

Buckmaster, Tristan 22 August 2014 (has links)
In 1949, Lars Onsager in his famous note on statistical hydrodynamics conjectured that weak solutions to the 3-D incompressible Euler equations belonging to Hölder spaces with Hölder exponent greater than 1/3 conserve kinetic energy; conversely, he conjectured the existence of solutions belonging to any Hölder space with exponent less than 1/3 which do not conserve kinetic energy. The first part, relating to conservation of kinetic energy, has since been confirmed (cf. Eyink 1994, Constantin-E-Titi 1994). The second part, relating to the existence of non-conservative solutions, remains an open conjecture and is the subject of this dissertation. In groundbreaking work of De Lellis and Székelyhidi Jr. (2012), the authors constructed the first examples of non-conservative Hölder continuous weak solutions to the Euler equations. The construction was subsequently improved by Isett (2012/2013), introducing many novel ideas in order to construct 1/5− Hölder continuous weak solutions with compact support in time. Adhering more closely to the original scheme of De Lellis and Székelyhidi Jr., we present a comparatively simpler construction of 1/5− Hölder continuous non-conservative weak solutions which may in addition be made to obey a prescribed kinetic energy profile. Furthermore, we extend this scheme in order to construct weak non-conservative solutions to the Euler equations whose Hölder 1/3− norm is Lebesgue integrable in time. The dissertation will be primarily based on three papers, two of which being in collaboration with De Lellis and Székelyhidi Jr.
25

Spectral threshold dominance, Brouwer's conjecture and maximality of Laplacian energy

Helmberg, Christoph, Trevisan, Vilmar 11 June 2015 (has links)
The Laplacian energy of a graph is the sum of the distances of the eigenvalues of the Laplacian matrix of the graph to the graph's average degree. The maximum Laplacian energy over all graphs on n nodes and m edges is conjectured to be attained for threshold graphs. We prove the conjecture to hold for graphs with the property that for each k there is a threshold graph on the same number of nodes and edges whose sum of the k largest Laplacian eigenvalues exceeds that of the k largest Laplacian eigenvalues of the graph. We call such graphs spectrally threshold dominated. These graphs include split graphs and cographs and spectral threshold dominance is preserved by disjoint unions and taking complements. We conjecture that all graphs are spectrally threshold dominated. This conjecture turns out to be equivalent to Brouwer's conjecture concerning a bound on the sum of the k largest Laplacian eigenvalues.
26

Arithmetic aspects of period maps and their special subvarieties

Kreutz, Tobias 02 January 2023 (has links)
Diese Dissertation behandelt arithmetische Eigenschaften von Familien algebraischer Varietäten und deren speziellen Untervarietäten. Im ersten Kapitel definieren wir sogenannte absolut spezielle Untervarietäten mithilfe von Delignes Begriff der absoluten Hodgeklassen. Ausgehend von der Vermutung, dass alle Hodgeklassen absolute Hodgeklassen sind, erwarten wir, dass alle speziellen Untervarietäten absolut speziell sind. Wir beweisen diese Erwartung für Untervarietäten, die eine bestimmte Monodromiebedingung erfüllen. Das zweite Kapitel führt eine l-adische Version von speziellen Untervarietäten ein, die wir l-Galois spezielle Untervarietäten nennen. Wir studieren bewiesene und vermutete Eigenschaften dieser Untervarietäten und deren Zusammenhang zur Struktur des l-Galois exzeptionellen Locus und zur Mumford-Tate Vermutung. Im dritten Kapitel beweisen wir eine Rapoport-Zink Uniformisierung für den Modulraum der primitiv polarisierten K3 Flächen und kubischen Vierfaltigkeiten mit supersingulärer Reduktion. In beiden Fällen ist der Modulraum uniformisiert von einer explizit definierten rigid analytischen Untervarietät einer lokalen Shimura-Varietät von orthogonalem Typ. / This thesis studies arithmetic aspects of families of algebraic varieties and their special subvarieties. In the first part, we use Deligne's framework of absolute Hodge classes to define a notion of absolutely special subvarieties. The conjecture that all Hodge classes are absolute Hodge predicts that every special subvariety is absolutely special. We prove this prediction for subvarieties satisfying a certain monodromy condition. The second part introduces an l-adic analog of special subvarieties that we call l-Galois special subvarieties. We study the properties of these subvarieties and discuss how known and unknown properties of l-Galois special subvarieties are related to the structure of the l-Galois exceptional locus and to the Mumford-Tate conjecture. In the third chapter, we prove a Rapoport-Zink type uniformization result for the moduli space of polarized K3 surfaces and cubic fourfolds. We show that in both cases, the tube over the supersingular locus of the moduli space is uniformized by an explicitly described rigid analytic open subvariety of a local Shimura variety of orthogonal type.
27

Index Theory and Positive Scalar Curvature / Index-Theorie und positive Skalarkrümmung

Pape, Daniel 23 September 2011 (has links)
No description available.
28

The Stickelberger ideal in the spirit of Kummer with application to the first case of Fermat's last theorem /

Jha, Vijay. January 1993 (has links)
Thesis (Ph. D.)--Punjab University, 1992. / Includes bibliographical references (p. 174-181).
29

Conjecturing (and Proving) in Dynamic Geometry after an Introduction of the Dragging Schemes

Baccaglini-Frank, Anna 11 April 2012 (has links)
This paper describes some results of a research study on conjecturing and proving in a dynamic geometry environment (DGE), and it focuses on particular cognitive processes that seem to be induced by certain uses of tools available in Cabri (a particular DGE). Building on the work of Arzarello and Olivero (Arzarello et al., 1998, 2002; Olivero, 2002), we have conceived a model describing some cognitive processes that may occur during the production of conjectures and proofs in a DGE and that seem to be related to the use of specific dragging schemes, in particular to the use of the scheme we refer to as maintaining dragging. This paper contains a description of aspects of the theoretical model we have elaborated for describing such cognitive processes, with specific attention towards the role of the dragging schemes, and an example of how the model can be used to analyze students’ explorations.
30

An apt perspective of analysis

Kishore, Nanad, Chandra, Ramesh 02 May 2012 (has links)
The discourse presented here is aimed at examining the justification of applications of current analysis to real world problems.

Page generated in 0.0445 seconds