531 |
Aerodynamic Performance of Cables with Spiral Protuberances in Strong Winds / 強風下におけるスパイラル突起付きケーブルの空力特性Dao, Minh Thu 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第25236号 / 工博第5195号 / 新制||工||1992(附属図書館) / 京都大学大学院工学研究科社会基盤工学専攻 / (主査)教授 八木 知己, 教授 KIM Chul-Woo, 教授 高橋 良和 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
|
532 |
Continual Traveling waves in Finite Structures: Theory, Simulations, and ExperimentsMalladi, Vijaya Venkata Narasimha Sriram 06 July 2016 (has links)
A mechanical wave is generated as a result of an external force interacting with the well-defined medium and it propagates through that medium transferring energy from one location to another. The ability to generate and control the motion of the mechanical waves through the finite medium opens up the opportunities for creating novel actuation mechanisms not possible before. However, any impedance to the path of these waves, especially in the form of finite boundaries, disperses this energy in the form of reflections. Therefore, it is impractical to achieve steady state traveling waves in finite structures without any reflections. In-spite of all these conditions, is it possible to generate waveforms that travel despite reflections at the boundaries? The work presented in this thesis develops a framework to answer this question by leveraging the dynamics of the finite structures without any active control.
Therefore, this work investigates how mechanical waves are developed in finite structures and identifies the factors that influence steady state wave characteristics. Theoretical and experimental analysis is conducted on 1D and 2D structures to realize different type of traveling waves. Owing to the robust characteristics of the piezo-ceramics (PZTs) in vibrational studies, we developed piezo-coupled structures to develop traveling waves through experiments.The results from this study provided the fundamental physics behind the generation of mechanical waves and their propagation through finite mediums. This research will consolidate the outcomes and develop a structural framework that will aid with the design of adaptable structural systems built for the purpose. The present work aims to generate and harness structural traveling waves for various applications. / Ph. D.
|
533 |
Dynamics of vortices in complex wakes: modeling, analysis, and experimentsBasu, Saikat 01 May 2014 (has links)
The thesis develops singly-periodic mathematical models for complex laminar wakes which are formed behind vortex-shedding bluff bodies. These wake structures exhibit a variety of patterns as the bodies oscillate or are in close proximity of one another. The most well-known formation comprises two counter-rotating vortices in each shedding cycle and is popularly known as the vk vortex street. Of the more complex configurations, as a specific example, this thesis investigates one of the most commonly occurring wake arrangements, which consists of two pairs of vortices in each shedding period. The paired vortices are, in general, counter-rotating and belong to a more general definition of the 2P mode, which involves periodic release of four vortices into the flow. The 2P arrangement can, primarily, be sub-classed into two types: one with a symmetric orientation of the two vortex pairs about the streamwise direction in a periodic domain and the other in which the two vortex pairs per period are placed in a staggered geometry about the wake centerline. The thesis explores the governing dynamics of such wakes and characterizes the corresponding relative vortex motion.
In general, for both the symmetric as well as the staggered four vortex periodic arrangements, the thesis develops two-dimensional potential flow models (consisting of an integrable Hamiltonian system of point vortices) that consider spatially periodic arrays of four vortices with their strengths being +/-1 and +/-2. Vortex formations observed in the experiments inspire the assumed spatial symmetry. The models demonstrate a number of dynamic modes that are classified using a bifurcation analysis of the phase space topology, consisting of level curves of the Hamiltonian. Despite the vortex strengths in each pair being unequal in magnitude, some initial conditions lead to relative equilibrium when the vortex configuration moves with invariant size and shape.
The scaled comparisons of the model results with experiments conducted in a flowing soap film with an airfoil, which was imparted with forced oscillations, are satisfactory and validate the reduced order modeling framework. The experiments have been performed by a collaborator group at the Department of Physics and Fluid Dynamics at the Technical University of Denmark (DTU), led by Dr. Anders Andersen. Similar experiments have also been run at Virginia Tech as part of this dissertation and the preliminary results are included in this treatise.
The thesis also employs the same dynamical systems techniques, which have been applied to study the 2P regime dynamics, to develop a mathematical model for the P+S mode vortex wakes, with three vortices present in each shedding cycle. The model results have also been compared favorably with an experiment and the predictions regarding the vortex circulation data match well with the previous results from literature.
Finally, the thesis introduces a novel concept of clean and renewable energy extraction from vortex-induced vibrations of bluff bodies. The slow-moving currents in the off-shore marine environments and riverine flows are beyond the operational capabilities of the more established hydrokinetic energy converters and the discussed technology promises to be a significant tool to generate useful power from these copiously available but previously untapped sources. / Ph. D.
|
534 |
Optimum Damping of Beam Vibrations Using Piezoceramic TransducersRufinelli, Marco 16 March 2016 (has links)
In this thesis a piezo-electro-mechanical system, constituted of an aluminum beam with five piezoelectric patches glued on it, each of them shunted with an RL electrical circuit, has been numerically and experimentally investigated, in order to determine the optimal electric tuning parameters for vibration damping. A numerical code based upon Galerkin weighted-residual method is developed and the complete piezo-electro-mechanical system is designed, realized and finally tested by a standard modal testing technique. Comparisons between different shunting configurations of the system are given and finally the experimental data are compared with ones obtained by the developed numerical code in order to verify the accuracy of the latter. / Master of Science
|
535 |
Characterization of the subsoil structure in the Middle-Chelif Basin (Algeria) using ambient vibration dataIssaadi, Abdelouahab 16 December 2022 (has links)
The northern part of Algeria is located in the border zone between the African and Eurasian plates. The collision between the two plates is expressed by a moderate to high seismicity, generally localized at the margins of the Neogene basins. The Middle-Chelif Basin is located in the northwestern part of Algeria, between the northern and southern Tellian Atlas mountain belts. The seismic activity is mainly generated by the El-Asnam fault, a 40 km long reverse fault located on the western edge of the basin. The 1980 El-Asnam earthquake caused significant damage in the cities of the basin. In particular, the cities of Oued-Fodda, El-Attaf and El-Abadia were heavily affected. In the western part of the alluvial plain of the Middle-Chelif, phenomena of cracks, settlements, landslides and liquefaction, have also occurred following the earthquake. This research aims to quantify dynamic properties of the soils of the Middle-Chelif Basin in terms of shear-wave velocity (Vs), fundamental frequency or vulnerability index (Kg) for the estimation of liquefaction potential. The calculation of dynamic soil properties allows a better assessment of the seismic hazard in the region. We have focused more on the characterization of the Vs structure of the superficial sedimentary layers in the entire Middle-Chelif Plain because of the role it plays in the amplification of the seismic waves during an earthquake. Secondly, these same soil parameters allow the creation of microzonation maps classifying the surface soil according to the criteria of NEHRP (National Earthquake Hazard Reduction Program). For this purpose, techniques based on single-station and array ambient vibration measurements are applied. Ambient vibrations were recorded at 323 sites using single-station, and at 18 sites using array measurements. The measurements were densified within urban areas. This thesis is divided into three main parts; the first one consists in a seismic microzonation of the city of Oued-Fodda, located at 1-2 km from the El-Asnam fault. The Horizontal-to-Vertical Spectral Ratio (HVSR) method was applied on ambient vibration records measured at 103 sites in the city and its surroundings. Maps of the variation of soil resonance frequencies, as well as their amplitudes, were provided. Inversion of the HVSR curves allowed obtaining 1D Vs models at each site. The 2D velocity profiles were used to image the shape of the sedimentary layers and the bedrock outcrop in the central part of the city. The second part aims to characterize the sedimentary deposits in the basin. The HVSR method was applied on ambient noise records measured at 164 sites and aligned on 20 NW-SE profiles. The Frequency-Wavenumber (F-K) technique was applied on array measurements at 7 sites. The 2D velocity profiles imaged the synclinal shape of the sedimentary deposits. A bedrock model was also provided. The third and last part consists of a more complete seismic microzonation in the three other main cities of the basin; Ain-Defla, El-Attaf and El-Abadia. Ambient vibrations were measured using a single-station at 56 sites and using arrays at 11 sites. As a result, maps of resonance frequency variation, Vs variation over the first 30 meters of the soil (Vs30) and soil classification were proposed in addition to a prediction equation for Vs30 in the region.
|
536 |
An Exploration of Nonlinear Locally Resonant Metamaterials with Electromechanical and Topological elementsMalla, Arun Lee 02 July 2024 (has links)
In recent years, the study of metamaterials has been a subject of much interest, with acoustic metamaterials being applied to a wide range of applications. This utility is in part due to the incorporation of various elements in their design. The addition of local resonators provides greater versatility in controlling vibrations. Nonlinear elements introduce features such as discrete breathers and frequency shift. Electromechanical metamaterials have been established to have great potential for use in simultaneous energy harvesting in addition to vibration control. Furthermore, metamaterials with quasiperiodic patterning have been shown to possess useful properties such as edge-localized modes. However, no works investigate the interaction between all these elements, especially in the nonlinear regime. In this work, we investigate a unique metamaterial with local resonators, nonlinearity, electromechanical elements, and quasiperiodicity. The proposed metamaterial is examined using both analytical and numerical techniques in order to firmly establish the effects of each element.
First, a nonlinear metamaterial with electromechanical local resonators is studied using the perturbation method of multiple scales, wavepacket excitation and direct integration, and specto-spatial processing techniques. The effect of the electromechanical local resonators is established for both the linear and nonlinear regimes, notably including the addition of new bandgaps and pass bands. The influence of electrical parameters on the system dynamics is explored through parametric analysis, demonstrating their use in tuning the system response. It is also shown that nonlinear phenomena such as localized solitons and frequency shift are present in the voltage response of the electromechanical metamaterial.
Next, a nonlinear metamaterial with local resonators and quasiperiodicity is investigated using the method of multiple scales as well as numerical solution of the method of harmonic balance. Topological features stemming from quasiperiodicity are observed in the linear and nonlinear regimes. The presence of local resonators is shown to result in an additional, topologically trivial bandgap. The influence of quasiperiodic parameters and the source of quasiperiodicity on the system's band structure and mode shapes are established in both the linear and nonlinear regimes. Nonlinearity is also shown to affect topological features such as edge modes, resulting in amplitude dependence that can affect the localization of these modes in the nonlinear regime.
Finally, a metamaterial with nonlinearity, electromechanical local resonators, and quasiperiodic patterning is modeled and investigated. Multiple configurations are examined, including different shunt circuits coupled to the electromechanical resonators and different sources of quasiperiodic patterning. It is shown that electromechanical local resonators produce two topologically trivial bandgaps, compared to the single trivial bandgap of the purely mechanical resonator. The influence of mechanical, electrical, and quasiperiodic parameters is explored to establish the effects of these parameters on bandgap formation in the linear regime. The behavior of the metamaterial in the nonlinear regime was found to be consistent with a purely mechanical system, with no adverse effects from the presence of electromechanical elements. The impact of nonlinear and quasiperiodic phenomena on energy harvesting is also investigated. Through exploration of this unique metamaterial, it is shown that beneficial features from all elements can be present at once, resulting in a versatile metamaterial with great potential for numerous applications. / Doctor of Philosophy / In recent years, the study of metamaterials has been a subject of much interest. Despite their name, metamaterials are not homogenous materials, but engineered structures designed to possess properties not found in naturally occurring materials. Many elements can be incorporated into metamaterial design, each with its own benefits. These can range from nonlinear springs, which allow the metamaterial to behave differently as its deformation increases, to electromechanical components, which convert the motion of the metamaterial into electrical voltage. While these elements have been examined individually and in certain combinations, no works examine the combination of elements proposed in this dissertation. In this work, we investigate the impact of nonlinearity, electromechanical components, and two other beneficial elements on the system's vibration response. Combinations of these elements are examined using various analysis techniques, which are used to establish the effects of each element individually as well as their interaction when combined. Multiple variations are examined for each element, such as different types of nonlinearity or different circuits attached to the electromechanical elements. This allows us to confirm the presence of valuable features exclusive to the elements incorporated into the metamaterial. Through exploration of multiple combinations of these metamaterial elements, it is shown that beneficial features from all elements can be present at once, resulting in a versatile metamaterial with great potential for numerous applications.
|
537 |
A Study on Steady State Traveling Waves in Strings and RodsAnakok, Isil 09 July 2018 (has links)
The main focus of this present work is to study how mechanical steady state traveling waves can be generated and propagated through one dimensional media by applying forces. By steady state traveling waves we refer to propagating mechanical waves in a finite medium that never exhibit reflections at the boundaries and continuously move from one end of the structure to the other.
Mechanical waves can be classified as traveling, standing and hybrid waves that are the results of the interplay of excitation forces, applied force locations, and the boundary conditions of the structure. Traveling waves carry energy through a defined medium while standing waves keep energy at certain areas that are associated with the modes of excitation. To understand the interaction of systems that exhibit traveling waves with their surrounding media (i.e., swimming flagella, manta ray locomotion), it is crucial to first understand the wave propagation and what is desired in these structural systems.
The parameters that affect the generation and propagation of waves should be welldefined to control and manipulate the desired system’s response. One-dimensional string and rod equations are studied with various boundary conditions to generate steady-state traveling waves in a string and longitudinal traveling waves in a rod. Two excitation forces are applied to a string and a rod near the boundaries to understand the generation and propagation of traveling and standing waves at various frequencies. The work examines the quality of the wave propagation in a string, and in a rod. A cost function approach is applied to identify the quality of such waves. Furthermore, steady-state square traveling waves are generated in a string and in-plane in a rod, both theoretically and experimentally. To the authors’ knowledge this is the first time this has been attempted in the literature.
Determining the quality of traveling waves and understanding the parameters on the wave propagation of a string and rod can lead to further understand and leverage various engineering disciplines such as mechanical actuation mechanisms, propulsion of flagella, and the basilar membrane in the ear’s cochlea. / Master of Science / This work presents how mechanical steady state traveling waves can be generated and propagated through structures by applying forces. By steady state traveling waves we refer to propagation of mechanical waves in a finite medium that never exhibits reflections at the boundaries and continuously moves from one end of the structure to the other.
Mechanical waves can be classified as traveling, standing and hybrid waves that are the results of applied forces, their locations, and the boundary conditions of the structure. Traveling waves carry energy through a defined medium while standing waves keep energy at certain areas. To understand the interaction of systems that exhibit traveling waves with their surrounding media, it is crucial to first understand the wave propagation and what is desired in these structural systems. The parameters that affect the generation and propagation of waves should be well-defined to control and manipulate the desired system’s behavior.
In this study, two excitation forces are applied to a string and a rod near the boundaries to understand the generation and propagation of traveling and standing waves at various frequencies. The work examines the quality of the wave propagation in a string, and in a rod. Steady-state square traveling waves are generated in a string and in-plane in a rod, both theoretically and experimentally. To the authors’ knowledge this is the first time this has been attempted in the literature.
Determining the quality of traveling waves and understanding the parameters on the wave propagation of a string and rod can lead to further understand and leverage various engineering disciplines such as mechanical actuation mechanisms, propulsion of flagella, and the basilar membrane in the ear’s cochlea.
|
538 |
Floor Vibrations: Girder Effective Moment of Inertia and Cost StudyWarmoth, Francis James 14 February 2002 (has links)
Studies on the effective moment of inertia of girders that support concrete slabs using joist seats as the horizontal shear connections, and a cost efficiency analysis comparing composite and non-composite floor systems that meet vibrations design standards, were conducted.
The first study was undertaken because over-prediction of girder effective moment of inertia was the suspected cause of several recent vibration problems in floors supported by widely spaced LH-series joists. Eight purpose-built floors of the type in question were subjected to experimental tests of girder effective moment of inertia and girder frequency. Frequencies were tested for two live loading cases. Three separate test configurations were made with each floor by changing the seat-to-girder connections between bolted, welded, and reinforced. In the study, 1) the accuracy of the current design practice is assessed, 2) a new relationship was proposed, and 3) suggestions for finite element modeling are made.
In recent years, composite construction has been used to improve cost efficiency by reducing structural weight and in some cases by reducing story height. However, vibration problems are a design consideration in composite floors because lighter floors tend to be more lively. It is not clear if cost savings can be made with composite construction if vibrations are considered in the design. To compare the cost of composite and non-composite floors that satisfy AISC/CISC Design Guide criterion for walking excitation, four typical size bays were analyzed using commercial design software that finds the least expensive member configuration for a given bay size. All acceptable bay configurations of member sizes and spacing were evaluated for least non-composite and composite costs, then these results were compared. The findings show that composite construction can be more economical when initial dead load deflections do not control the design. / Master of Science
|
539 |
Exploring the Universe through colors and soundEl Harfaoui, Leila January 2024 (has links)
This essay summarizes my artistry and approach as it has evolved during my five years at the Royal Institute of Art in Stockholm. My artistry is multidisciplinary where I find inspiration in art, technology, science, and society. My artistic process often relates to a full concept, where I explore and tell multi-layered stories. I study and engage with scientific theories and engage with them in a playful and experimental non-scientific way. These stories are expressed in my work that are physical and digital created from my intent and from physical phenomena that the eye cannot always see. I firstly describe how I have created paintings by using technology generated frequencies and how I have put them on canvas. “Painting with technology frequencies and vibrations” uses a technology-oriented approach in making paintings inspired from the Chladni plate method. The conclusion is that it was possible to capture frequencies on canvas. Secondly, I describe how I have made paintings, and associated pieces, that relate to frequencies and disturbances in human characteristics. For the concept “Painting with emotional frequencies and vibrations” I brought in phenomena from quantum physics and specifically the observer effect to make the paintings. I focused on morals and ethics and how art possibly can positively affect us human beings. In my mind I also drew parallels to the future mass-surveillance society and how we may be affected by being observed all the time.
|
540 |
Vibration- and Impedance-based Structural Health Monitoring Applications and Thermal EffectsAfshari, Mana 08 June 2012 (has links)
Structural Health Monitoring (SHM) is the implementation of damage detection and characterization algorithms using in vitro sensing and actuation for rapidly determining faults in structural systems before the damage leads to catastrophic failure. SHM systems provide near real time information on the state of the integrity of civil, mechanical and aerospace structures. A roadblock in implementing SHM systems in practice is the possibility of false positives introduced by environmental changes. In particular, temperature changes can cause many SHM algorithms to indicate damage when no damage exists. While several experimentally based efforts have been attempted to alleviate temperature effects on SHM algorithms, fundamental research on the effects of temperature on SHM has not been investigated.
The work presented in this dissertation composes of two main parts: the first part focuses on the experimental studies of different mechanical structures of aluminum beams, lug samples and railroad switch bolts. The experimental study of the aluminum lug samples and beams is done to propose and examine methods and models for in situ interrogation and detection of damage (in the form of a fatigue crack) in these specimen and to quantify the smallest detectable crack size in aluminum structures. This is done by applying the electrical impedance-based SHM method and using piezoceramic sensors and actuators. Moreover, in order to better extract the damage features from the measured electrical impedance, the ARX non-linear feature extraction is employed. This non-linear feature extraction, compared to the linear one, results in detection of damages in the micro-level size and improves the early detection of fatigue cracks in structures. Experimental results also show that the temperature variation is an important factor in the structural health monitoring applications and its effect on the impedance-based monitoring of the initiation and growth of fatigue cracks in the lug samples is experimentally investigated. The electrical impedance-based SHM technique is also applied in monitoring the loosening of bolted joints in a full-scale railroad switch and the sensitivity of this technique to different levels of loosening of the bolts is investigated.
The second part of the work presented here focuses on the analytical study and better understanding of the effect of temperature on the vibration-based SHM. This is done by analytical modeling of the vibratory response of an Euler-Bernoulli beam with two different support conditions of simply supported and clamped-clamped and with a single, non-breathing fatigue crack at different locations along the length of the beam. The effect of temperature variations on the vibratory response of the beam structure is modeled by considering the two effects of temperature-dependent material properties and thermal stress formations inside the structure. The inclusion of thermal effects from both of these points of view (i.e. material properties variations and generation of thermal stresses) as independent factors is investigated and justified by studying the formulations of Helmholtz free energy and stresses inside a body. The effect of temperature variations on the vibratory response of the cracked beam are then studied by integrating these two temperature-related effects into the analytical modeling. The effect of a growing fatigue crack as well as temperature variations and thermal loadings is then numerically studied on the deflection of the beam and the output voltage of a surface-bonded piezoceramic sensor. / Ph. D.
|
Page generated in 0.0998 seconds