Spelling suggestions: "subject:"visar"" "subject:"visat""
51 |
Técnica para interação com mãos em superficies planares utilizando uma câmera RGB-D / A technique for hand interaction with planar surfaces using an RGB-D cameraWeber, Henrique January 2016 (has links)
Sistemas de Interação Humano-Computador baseados em toque são uma tecnologia disseminada em tablets, smartphones e notebooks. Trata-se de um grande avanço que aumenta a facilidade de comunicação e, ao mesmo tempo, diminui a necessidade de interfaces como mouse e teclado. Entretanto, a superfície de interação utilizada por esses sistemas normalmente é equipada com sensores para a captação dos movimentos realizados pelo usuário, o que impossibilita transformar uma superfície planar qualquer (uma mesa, por exemplo) em uma superfície de interação. Por outro lado, a popularização de sensores de profundidade a partir do lançamento do Microsoft Kinect propiciou o desenvolvimento de sistemas que adotam objetos do dia a dia como superfícies de interação. Nesta dissertação é proposta uma interface natural para interação com superfícies planares utilizando uma câmera RGB-D em posição descendente. Inicialmente, o plano de interação é localizado na nuvem de pontos 3D através de uma variação do algoritmo RANSAC com coerência temporal. Objetos acima do plano são segmentados a partir da transformada watershed baseada em uma função de energia que combina cor, profundidade e informação de confiança. A cor de pele é utilizada para isolar as mãos, e os dedos que interagem com o plano são identificados por um novo processo de esqueletonização 2D. Finalmente, as pontas dos dedos são rastreadas com o uso do algoritmo Húngaro, e o filtro de Kalman é usado para produzir trajetórias mais suaves. Para demonstrar a utilidade da técnica, foi desenvolvido um protótipo que permite ao usuário desenhar em uma superfície de forma natural e intuitiva. / Touch-based Human-Computer Interfaces (HCIs) are a widespread technology present in tablets, smartphones, and notebooks. This is a breakthrough which increases the ease of communication and at the same time reduces the need for interfaces such as mouse and keyboard. However, the interaction surface used by these systems is usually equipped with sensors to capture the movements made by the user, making it impossible to substitute this surface by any other such as a table, for example. On the other hand, the progress of commercial 3D depth sensing technologies in the past five years, having as a keystone Microsoft’s Kinect sensor, has increased the interest in 3D hand gesture recognition using depth data. In this dissertation, we present a natural Human-Computer Interface (HCI) for interaction with planar surfaces using a topdown RGB-D camera. Initially, the interaction plane is located in the 3D point cloud by using a variation of RANSAC with temporal coherence. Off-plane objects are segmented using the watershed transform based on an energy function that combines color, depth and confidence information. Skin color information is used to isolate the hand(s), and a novel 2D skeletonization process identifies the interaction fingers. Finally, the fingertips are tracked using the Hungarian algorithm, and a Kalman filter is applied to produce smoother trajectories. To demonstrate the usefulness of the technique, we also developed a prototype in which the user can draw on the surface using lines and sprays in a natural way.
|
52 |
Detecção e contagem de veículos em vídeos de tráfego urbano / Detecting and counting vehicles in urban traffic videoBarcellos, Pablo Roberlan Manke January 2014 (has links)
Este trabalho apresenta um novo método para o rastreamento e contagem de veículos em vídeos de tráfego urbano. Usando técnicas de processamento de imagens e de agrupamentos de partículas, o método proposto usa coerência de movimento e coerência espacial para agrupar partículas, de modo que cada grupo represente veículos nas sequências de vídeo. Uma máscara contendo os objetos do primeiro plano é criada usando os métodos Gaussian Mixture Model e Motion Energy Images para determinar os locais onde as partículas devem ser geradas, e as regiões convexas dos agrupamentos são então analisadas para verificar se correspondem a um veículo. Esta análise leva em consideração a forma convexa dos grupos de partículas (objetos) e a máscara de foreground para realizar a fusão ou divisão dos agrupamentos obtidos. Depois que um veículo é identificado, ele é rastreado utilizando similaridade de histogramas de cor em janelas centradas nas partículas dos agrupamentos. A contagem de veículos acontece em laços virtuais definidos pelo usuário, através da interseção dos veículos rastreados com os laços virtuais. Testes foram realizados utilizando seis diferentes vídeos de tráfego, em um total de 80000 quadros. Os resultados foram comparados com métodos semelhantes disponíveis na literatura, fornecendo, resultados equivalentes ou superiores. / This work presents a new method for tracking and counting vehicles in traffic videos. Using techniques of image processing and particle clustering, the proposed method uses motion coherence and spatial adjacency to group particles so that each group represents vehicles in the video sequences. A foreground mask is created using Gaussian Mixture Model and Motion Energy Images to determine the locations where the particles must be generated, and the convex shapes of detecting groups are then analyzed for the potential detection of vehicles. This analysis takes into consideration the convex shape of the particle groups (objects) and the foreground mask to merge or split the obtained groupings. After a vehicle is identified, it is tracked using the similarity of color histograms on windows centered at the particle locations. The vehicle count takes place on userdefined virtual loops, through the intersections of tracked vehicles with the virtual loops. Tests were conducted using six different traffic videos, on a total of 80.000 frames. The results were compared with similar methods available in the literature, providing results equivalent or superior.
|
53 |
Detecção e classificação de sinalização vertical de trânsito em cenários complexosHoelscher, Igor Gustavo January 2017 (has links)
A mobilidade é uma marca da nossa civilização. Tanto o transporte de carga quanto o de passageiros compartilham de uma enorme infra-estrutura de conexões operados com o apoio de um sofisticado sistema logístico. Simbiose otimizada de módulos mecânicos e elétricos, os veículos evoluem continuamente com a integração de avanços tecnológicos e são projetados para oferecer o melhor em conforto, segurança, velocidade e economia. As regulamentações organizam o fluxo de transporte rodoviário e as suas interações, estipulando regras a fim de evitar conflitos. Mas a atividade de condução pode tornar-se estressante em diferentes condições, deixando os condutores humanos propensos a erros de julgamento e criando condições de acidente. Os esforços para reduzir acidentes de trânsito variam desde campanhas de re-educação até novas tecnologias. Esses tópicos têm atraído cada vez mais a atenção de pesquisadores e indústrias para Sistemas de Transporte Inteligentes baseados em imagens. Este trabalho apresenta um estudo sobre técnicas de detecção e classificação de sinalização vertical de trânsito em imagens de cenários de tráfego complexos. O sistema de reconhecimento visual automático dos sinais destina-se a ser utilizado para o auxílio na atividade de direção de um condutor humano ou como informação para um veículo autônomo. Com base nas normas para sinalização viária, foram testadas duas abordagens para a segmentação de imagens e seleção de regiões de interesse. O primeiro, uma limiarização de cor em conjunto com Descritores de Fourier. Seu desempenho não foi satisfatório. No entanto, utilizando os seus princípios, desenvolveu-se um novo método de filtragem de cores baseado em Lógica Fuzzy que, juntamente com um algoritmo de seleção de regiões estáveis em diferentes tons de cinza (MSER), ganhou robustez à oclusão parcial e a diferentes condições de iluminação. Para classificação, duas Redes Neurais Convolucionais curtas são apresentadas para reconhecer sinais de trânsito brasileiros e alemães. A proposta é ignorar cálculos complexos ou features selecionadas manualmente para filtrar falsos positivos antes do reconhecimento, realizando a confirmação (etapa de detecção) e a classificação simultaneamente. A utilização de métodos do estado da arte para treinamento e otimização melhoraram a eficiência da técnica de aprendizagem da máquina. Além disso, este trabalho fornece um novo conjunto de imagens com cenários de tráfego em diferentes regiões do Brasil, contendo 2.112 imagens em resolução WSXGA+. As análises qualitativas são mostradas no conjunto de dados brasileiro e uma análise quantitativa com o conjunto de dados alemão apresentou resultados competitivos com outros métodos: 94% de acurácia na extração e 99% de acurácia na classificação. / Mobility is an imprint of our civilization. Both freight and passenger transport share a huge infrastructure of connecting links operated with the support of a sophisticated logistic system. As an optimized symbiosis of mechanical and electrical modules, vehicles are evolving continuously with the integration of technological advances and are engineered to offer the best in comfort, safety, speed and economy. Regulations organize the flow of road transportation machines and help on their interactions, stipulating rules to avoid conflicts. But driving can become stressing on different conditions, leaving human drivers prone to misjudgments and creating accident conditions. Efforts to reduce traffic accidents that may cause injuries and even deaths range from re-education campaigns to new technologies. These topics have increasingly attracted the attention of researchers and industries to Image-based Intelligent Transportation Systems. This work presents a study on techniques for detecting and classifying traffic signs in images of complex traffic scenarios. The system for automatic visual recognition of signs is intended to be used as an aid for a human driver or as input to an autonomous vehicle. Based on the regulations for road signs, two approaches for image segmentation and selection of regions of interest were tested. The first one, a color thresholding in conjunction with Fourier Descriptors. Its performance was not satisfactory. However, using its principles, a new method of color filtering using Fuzzy Logic was developed which, together with an algorithm that selects stable regions in different shades of gray (MSER), the approach gained robustness to partial occlusion and to different lighting conditions. For classification, two short Convolutional Neural Networks are presented to recognize both Brazilian and German traffic signs. The proposal is to skip complex calculations or handmade features to filter false positives prior to recognition, making the confirmation (detection step) and the classification simultaneously. State-of-the-art methods for training and optimization improved the machine learning efficiency. In addition, this work provides a new dataset with traffic scenarios in different regions of Brazil, containing 2,112 images in WSXGA+ resolution. Qualitative analyzes are shown in the Brazilian dataset and a quantitative analysis with the German dataset presented competitive results with other methods: 94% accuracy in extraction and 99% accuracy in the classification.
|
54 |
A framework for autonomous mission and guidance control of unmanned aerial vehicles based on computer vision techniquesBasso, Maik January 2018 (has links)
A computação visual é uma área do conhecimento que estuda o desenvolvimento de sistemas artificiais capazes de detectar e desenvolver a percepção do meio ambiente através de informações de imagem ou dados multidimensionais. A percepção visual e a manipulação são combinadas em sistemas robóticos através de duas etapas "olhar"e depois "movimentar-se", gerando um laço de controle de feedback visual. Neste contexto, existe um interesse crescimente no uso dessas técnicas em veículos aéreos não tripulados (VANTs), também conhecidos como drones. Essas técnicas são aplicadas para posicionar o drone em modo de vôo autônomo, ou para realizar a detecção de regiões para vigilância aérea ou pontos de interesse. Os sistemas de computação visual geralmente tomam três passos em sua operação, que são: aquisição de dados em forma numérica, processamento de dados e análise de dados. A etapa de aquisição de dados é geralmente realizada por câmeras e sensores de proximidade. Após a aquisição de dados, o computador embarcado realiza o processamento de dados executando algoritmos com técnicas de medição (variáveis, índice e coeficientes), detecção (padrões, objetos ou áreas) ou monitoramento (pessoas, veículos ou animais). Os dados processados são analisados e convertidos em comandos de decisão para o controle para o sistema robótico autônomo Visando realizar a integração dos sistemas de computação visual com as diferentes plataformas de VANTs, este trabalho propõe o desenvolvimento de um framework para controle de missão e guiamento de VANTs baseado em visão computacional. O framework é responsável por gerenciar, codificar, decodificar e interpretar comandos trocados entre as controladoras de voo e os algoritmos de computação visual. Como estudo de caso, foram desenvolvidos dois algoritmos destinados à aplicação em agricultura de precisão. O primeiro algoritmo realiza o cálculo de um coeficiente de reflectância visando a aplicação auto-regulada e eficiente de agroquímicos, e o segundo realiza a identificação das linhas de plantas para realizar o guiamento dos VANTs sobre a plantação. O desempenho do framework e dos algoritmos propostos foi avaliado e comparado com o estado da arte, obtendo resultados satisfatórios na implementação no hardware embarcado. / Cumputer Vision is an area of knowledge that studies the development of artificial systems capable of detecting and developing the perception of the environment through image information or multidimensional data. Nowadays, vision systems are widely integrated into robotic systems. Visual perception and manipulation are combined in two steps "look" and then "move", generating a visual feedback control loop. In this context, there is a growing interest in using computer vision techniques in unmanned aerial vehicles (UAVs), also known as drones. These techniques are applied to position the drone in autonomous flight mode, or to perform the detection of regions for aerial surveillance or points of interest. Computer vision systems generally take three steps to the operation, which are: data acquisition in numerical form, data processing and data analysis. The data acquisition step is usually performed by cameras or proximity sensors. After data acquisition, the embedded computer performs data processing by performing algorithms with measurement techniques (variables, index and coefficients), detection (patterns, objects or area) or monitoring (people, vehicles or animals). The resulting processed data is analyzed and then converted into decision commands that serve as control inputs for the autonomous robotic system In order to integrate the visual computing systems with the different UAVs platforms, this work proposes the development of a framework for mission control and guidance of UAVs based on computer vision. The framework is responsible for managing, encoding, decoding, and interpreting commands exchanged between flight controllers and visual computing algorithms. As a case study, two algorithms were developed to provide autonomy to UAVs intended for application in precision agriculture. The first algorithm performs the calculation of a reflectance coefficient used to perform the punctual, self-regulated and efficient application of agrochemicals. The second algorithm performs the identification of crop lines to perform the guidance of the UAVs on the plantation. The performance of the proposed framework and proposed algorithms was evaluated and compared with the state of the art, obtaining satisfactory results in the implementation of embedded hardware.
|
55 |
Reconhecimento automático de padrões em imagens ecocardiográficas / Automatic pattern recognition in echocardiographic imagesSiqueira, Mozart Lemos de January 2010 (has links)
Ecocardiografia fetal é uma importante ferramenta para diagnóstico. Esta tese apresenta um método que provê localização automática de cavidades cardíacas em imagens ecocardiografias fetais, onde o diagnóstico de problemas congênitos do coração pode melhorar os resultados do tratamento. As estruturas de interesse são as quatro cavidades cardíacas (átrio direito, átrio esquerdo, ventrículo direito e ventrículo esquerdo). O método é baseado na busca por cavidades cardíacas através de uma molde de busca (template) para encontrar padrões de interesse. Este molde é calculado usando uma função densidade probabilidade que recebe como parâmetro os níveis de cinza de uma região representativa da cavidade, na imagem. Além disso, em alguns testes também foram utilizadas características espaciais da imagem para cálculo do molde de busca. Nesse sentido a busca é implementada de uma forma hierárquica: (i) primeiro, é localizada a região do coração; e (ii) em seguida, baseando na região do coração a cavidade de interesse á buscada. A comparação do molde de busca e as regiões de interesse na imagem é feita utilizando o Coeficiente de Bhattacharyya, o qual é analisado ao longo dos testes para justificar sua escolha. Uma das principais características do método é a invariância a rotação apresentada pelas estruturas. / Fetal echocardiography is an important tool for diagnosing. This thesis presents a method to provide automatic localization of cardiac cavities in fetal echocardiography images, where the early diagnostics of heart congenital diseases can greatly improve results from medical treatment. The structures of interest are the four cardiac cavities (left and right atrium, left and right ventricle). The method is based in the search of cardiac structures with a mold to find the pattern of interest. This mold is calculated using a probability density function that receives as parameter the gray level of a representative image and also uses spatial features of the images to calculate the mold. A hierarchical search is performed: (i) first, the region of interest is covered to locate the heart; and (ii) based on the position of the heart, the desired structure is found in the image. The comparison of the mold and the candidate image is made using the Bhattacharyya coefficient, which our experimental tests have shown good results. One of the main characteristics of the method is its rotation invariance.
|
56 |
[en] IMPLEMENTATION OF AN OPTICAL TRACKING DEVICE WITH 6 DEGREES OF FREEDOM FOR INTERACTING WITH VIRTUAL REALITY APPLICATIONS / [pt] IMPLEMENTAÇÃO DE UM DISPOSITIVO DE RASTREAMENTO ÓPTICO COM 6 GRAUS DE LIBERDADE PARA INTERAÇÃO COM APLICAÇÕES DE REALIDADE VIRTUALMANUEL EDUARDO LOAIZA FERNANDEZ 28 June 2005 (has links)
[pt] Os sistemas de rastreamento são uma das tecnologias
cruciais para os
sistemas de realidade virtual. Eles permitem detectar
continuamente a posição e
orientação de marcadores ou objetos específicos que o
usuário utiliza para
interagir com o sistema. Uma das tecnologias mais
utilizadas para implementar
este tipo de sistema é o rastreamento óptico, a qual
permite ao usuário ter maior
liberdade em seus movimentos porque não precisa de cabos
ou elementos
mecânicos que possam restringir ou atrapalhar a sensação
de imersão que se tenta
criar na interação com ambientes de realidade virtual.
Este trabalho apresenta a
construção e implementação de um dispositivo de entrada,
baseado em
rastreamento óptico, que é utilizado para interação com
aplicações de realidade
virtual do tipo semi-imersivas em um ambiente desktop
comum. O dispositivo
tem a capacidade de recuperar seis graus de liberdade dos
movimentos feitos por
um conjunto de marcadores que são controlados pela mão do
usuário. A partir da
recuperação dos seis graus de liberdade, o dispositivo é
complementado com a
capacidade de emissão de eventos que permitem a interação
do usuário com a
aplicação. No final apresenta-se uma aplicação que
demonstra a adaptação dos
eventos gerados e o desempenho do dispositivo implementado. / [en] Tracking systems are a fundamental technology in virtual
reality systems.
They provide a continuous detection of the position and
orientation of markers or
specific objects that the user employs to interact with
the system. One of the
technologies most commonly used to implement these types
of systems is the
optical tracking, which allows the users to have more
freedom in their movements
because it does not need cables or mechanical elements
that can restrict or hinder
the immersion sensation that is tried to create in the
interaction with virtual reality
environments. This work presents the construction and
implementation of an input
device that is based on optical tracking that is used for
interaction with semiimmersive
virtual reality applications on ordinary desktop
environments. This
device has the capability to get the six degrees of
freedom of the movements made
by a set of markers that are controlled by the user hand.
Based on the six degrees
of freedom recovered, the device is complemented with the
ability to emit events
that allow the interaction of the user with the
application. Finally, an application is
presented for demonstrating the use of the generated
events and the performance
of our device.
|
57 |
Detecção e classificação de sinalização vertical de trânsito em cenários complexosHoelscher, Igor Gustavo January 2017 (has links)
A mobilidade é uma marca da nossa civilização. Tanto o transporte de carga quanto o de passageiros compartilham de uma enorme infra-estrutura de conexões operados com o apoio de um sofisticado sistema logístico. Simbiose otimizada de módulos mecânicos e elétricos, os veículos evoluem continuamente com a integração de avanços tecnológicos e são projetados para oferecer o melhor em conforto, segurança, velocidade e economia. As regulamentações organizam o fluxo de transporte rodoviário e as suas interações, estipulando regras a fim de evitar conflitos. Mas a atividade de condução pode tornar-se estressante em diferentes condições, deixando os condutores humanos propensos a erros de julgamento e criando condições de acidente. Os esforços para reduzir acidentes de trânsito variam desde campanhas de re-educação até novas tecnologias. Esses tópicos têm atraído cada vez mais a atenção de pesquisadores e indústrias para Sistemas de Transporte Inteligentes baseados em imagens. Este trabalho apresenta um estudo sobre técnicas de detecção e classificação de sinalização vertical de trânsito em imagens de cenários de tráfego complexos. O sistema de reconhecimento visual automático dos sinais destina-se a ser utilizado para o auxílio na atividade de direção de um condutor humano ou como informação para um veículo autônomo. Com base nas normas para sinalização viária, foram testadas duas abordagens para a segmentação de imagens e seleção de regiões de interesse. O primeiro, uma limiarização de cor em conjunto com Descritores de Fourier. Seu desempenho não foi satisfatório. No entanto, utilizando os seus princípios, desenvolveu-se um novo método de filtragem de cores baseado em Lógica Fuzzy que, juntamente com um algoritmo de seleção de regiões estáveis em diferentes tons de cinza (MSER), ganhou robustez à oclusão parcial e a diferentes condições de iluminação. Para classificação, duas Redes Neurais Convolucionais curtas são apresentadas para reconhecer sinais de trânsito brasileiros e alemães. A proposta é ignorar cálculos complexos ou features selecionadas manualmente para filtrar falsos positivos antes do reconhecimento, realizando a confirmação (etapa de detecção) e a classificação simultaneamente. A utilização de métodos do estado da arte para treinamento e otimização melhoraram a eficiência da técnica de aprendizagem da máquina. Além disso, este trabalho fornece um novo conjunto de imagens com cenários de tráfego em diferentes regiões do Brasil, contendo 2.112 imagens em resolução WSXGA+. As análises qualitativas são mostradas no conjunto de dados brasileiro e uma análise quantitativa com o conjunto de dados alemão apresentou resultados competitivos com outros métodos: 94% de acurácia na extração e 99% de acurácia na classificação. / Mobility is an imprint of our civilization. Both freight and passenger transport share a huge infrastructure of connecting links operated with the support of a sophisticated logistic system. As an optimized symbiosis of mechanical and electrical modules, vehicles are evolving continuously with the integration of technological advances and are engineered to offer the best in comfort, safety, speed and economy. Regulations organize the flow of road transportation machines and help on their interactions, stipulating rules to avoid conflicts. But driving can become stressing on different conditions, leaving human drivers prone to misjudgments and creating accident conditions. Efforts to reduce traffic accidents that may cause injuries and even deaths range from re-education campaigns to new technologies. These topics have increasingly attracted the attention of researchers and industries to Image-based Intelligent Transportation Systems. This work presents a study on techniques for detecting and classifying traffic signs in images of complex traffic scenarios. The system for automatic visual recognition of signs is intended to be used as an aid for a human driver or as input to an autonomous vehicle. Based on the regulations for road signs, two approaches for image segmentation and selection of regions of interest were tested. The first one, a color thresholding in conjunction with Fourier Descriptors. Its performance was not satisfactory. However, using its principles, a new method of color filtering using Fuzzy Logic was developed which, together with an algorithm that selects stable regions in different shades of gray (MSER), the approach gained robustness to partial occlusion and to different lighting conditions. For classification, two short Convolutional Neural Networks are presented to recognize both Brazilian and German traffic signs. The proposal is to skip complex calculations or handmade features to filter false positives prior to recognition, making the confirmation (detection step) and the classification simultaneously. State-of-the-art methods for training and optimization improved the machine learning efficiency. In addition, this work provides a new dataset with traffic scenarios in different regions of Brazil, containing 2,112 images in WSXGA+ resolution. Qualitative analyzes are shown in the Brazilian dataset and a quantitative analysis with the German dataset presented competitive results with other methods: 94% accuracy in extraction and 99% accuracy in the classification.
|
58 |
A framework for autonomous mission and guidance control of unmanned aerial vehicles based on computer vision techniquesBasso, Maik January 2018 (has links)
A computação visual é uma área do conhecimento que estuda o desenvolvimento de sistemas artificiais capazes de detectar e desenvolver a percepção do meio ambiente através de informações de imagem ou dados multidimensionais. A percepção visual e a manipulação são combinadas em sistemas robóticos através de duas etapas "olhar"e depois "movimentar-se", gerando um laço de controle de feedback visual. Neste contexto, existe um interesse crescimente no uso dessas técnicas em veículos aéreos não tripulados (VANTs), também conhecidos como drones. Essas técnicas são aplicadas para posicionar o drone em modo de vôo autônomo, ou para realizar a detecção de regiões para vigilância aérea ou pontos de interesse. Os sistemas de computação visual geralmente tomam três passos em sua operação, que são: aquisição de dados em forma numérica, processamento de dados e análise de dados. A etapa de aquisição de dados é geralmente realizada por câmeras e sensores de proximidade. Após a aquisição de dados, o computador embarcado realiza o processamento de dados executando algoritmos com técnicas de medição (variáveis, índice e coeficientes), detecção (padrões, objetos ou áreas) ou monitoramento (pessoas, veículos ou animais). Os dados processados são analisados e convertidos em comandos de decisão para o controle para o sistema robótico autônomo Visando realizar a integração dos sistemas de computação visual com as diferentes plataformas de VANTs, este trabalho propõe o desenvolvimento de um framework para controle de missão e guiamento de VANTs baseado em visão computacional. O framework é responsável por gerenciar, codificar, decodificar e interpretar comandos trocados entre as controladoras de voo e os algoritmos de computação visual. Como estudo de caso, foram desenvolvidos dois algoritmos destinados à aplicação em agricultura de precisão. O primeiro algoritmo realiza o cálculo de um coeficiente de reflectância visando a aplicação auto-regulada e eficiente de agroquímicos, e o segundo realiza a identificação das linhas de plantas para realizar o guiamento dos VANTs sobre a plantação. O desempenho do framework e dos algoritmos propostos foi avaliado e comparado com o estado da arte, obtendo resultados satisfatórios na implementação no hardware embarcado. / Cumputer Vision is an area of knowledge that studies the development of artificial systems capable of detecting and developing the perception of the environment through image information or multidimensional data. Nowadays, vision systems are widely integrated into robotic systems. Visual perception and manipulation are combined in two steps "look" and then "move", generating a visual feedback control loop. In this context, there is a growing interest in using computer vision techniques in unmanned aerial vehicles (UAVs), also known as drones. These techniques are applied to position the drone in autonomous flight mode, or to perform the detection of regions for aerial surveillance or points of interest. Computer vision systems generally take three steps to the operation, which are: data acquisition in numerical form, data processing and data analysis. The data acquisition step is usually performed by cameras or proximity sensors. After data acquisition, the embedded computer performs data processing by performing algorithms with measurement techniques (variables, index and coefficients), detection (patterns, objects or area) or monitoring (people, vehicles or animals). The resulting processed data is analyzed and then converted into decision commands that serve as control inputs for the autonomous robotic system In order to integrate the visual computing systems with the different UAVs platforms, this work proposes the development of a framework for mission control and guidance of UAVs based on computer vision. The framework is responsible for managing, encoding, decoding, and interpreting commands exchanged between flight controllers and visual computing algorithms. As a case study, two algorithms were developed to provide autonomy to UAVs intended for application in precision agriculture. The first algorithm performs the calculation of a reflectance coefficient used to perform the punctual, self-regulated and efficient application of agrochemicals. The second algorithm performs the identification of crop lines to perform the guidance of the UAVs on the plantation. The performance of the proposed framework and proposed algorithms was evaluated and compared with the state of the art, obtaining satisfactory results in the implementation of embedded hardware.
|
59 |
Detecção e contagem de veículos em vídeos de tráfego urbano / Detecting and counting vehicles in urban traffic videoBarcellos, Pablo Roberlan Manke January 2014 (has links)
Este trabalho apresenta um novo método para o rastreamento e contagem de veículos em vídeos de tráfego urbano. Usando técnicas de processamento de imagens e de agrupamentos de partículas, o método proposto usa coerência de movimento e coerência espacial para agrupar partículas, de modo que cada grupo represente veículos nas sequências de vídeo. Uma máscara contendo os objetos do primeiro plano é criada usando os métodos Gaussian Mixture Model e Motion Energy Images para determinar os locais onde as partículas devem ser geradas, e as regiões convexas dos agrupamentos são então analisadas para verificar se correspondem a um veículo. Esta análise leva em consideração a forma convexa dos grupos de partículas (objetos) e a máscara de foreground para realizar a fusão ou divisão dos agrupamentos obtidos. Depois que um veículo é identificado, ele é rastreado utilizando similaridade de histogramas de cor em janelas centradas nas partículas dos agrupamentos. A contagem de veículos acontece em laços virtuais definidos pelo usuário, através da interseção dos veículos rastreados com os laços virtuais. Testes foram realizados utilizando seis diferentes vídeos de tráfego, em um total de 80000 quadros. Os resultados foram comparados com métodos semelhantes disponíveis na literatura, fornecendo, resultados equivalentes ou superiores. / This work presents a new method for tracking and counting vehicles in traffic videos. Using techniques of image processing and particle clustering, the proposed method uses motion coherence and spatial adjacency to group particles so that each group represents vehicles in the video sequences. A foreground mask is created using Gaussian Mixture Model and Motion Energy Images to determine the locations where the particles must be generated, and the convex shapes of detecting groups are then analyzed for the potential detection of vehicles. This analysis takes into consideration the convex shape of the particle groups (objects) and the foreground mask to merge or split the obtained groupings. After a vehicle is identified, it is tracked using the similarity of color histograms on windows centered at the particle locations. The vehicle count takes place on userdefined virtual loops, through the intersections of tracked vehicles with the virtual loops. Tests were conducted using six different traffic videos, on a total of 80.000 frames. The results were compared with similar methods available in the literature, providing results equivalent or superior.
|
60 |
Técnica para interação com mãos em superficies planares utilizando uma câmera RGB-D / A technique for hand interaction with planar surfaces using an RGB-D cameraWeber, Henrique January 2016 (has links)
Sistemas de Interação Humano-Computador baseados em toque são uma tecnologia disseminada em tablets, smartphones e notebooks. Trata-se de um grande avanço que aumenta a facilidade de comunicação e, ao mesmo tempo, diminui a necessidade de interfaces como mouse e teclado. Entretanto, a superfície de interação utilizada por esses sistemas normalmente é equipada com sensores para a captação dos movimentos realizados pelo usuário, o que impossibilita transformar uma superfície planar qualquer (uma mesa, por exemplo) em uma superfície de interação. Por outro lado, a popularização de sensores de profundidade a partir do lançamento do Microsoft Kinect propiciou o desenvolvimento de sistemas que adotam objetos do dia a dia como superfícies de interação. Nesta dissertação é proposta uma interface natural para interação com superfícies planares utilizando uma câmera RGB-D em posição descendente. Inicialmente, o plano de interação é localizado na nuvem de pontos 3D através de uma variação do algoritmo RANSAC com coerência temporal. Objetos acima do plano são segmentados a partir da transformada watershed baseada em uma função de energia que combina cor, profundidade e informação de confiança. A cor de pele é utilizada para isolar as mãos, e os dedos que interagem com o plano são identificados por um novo processo de esqueletonização 2D. Finalmente, as pontas dos dedos são rastreadas com o uso do algoritmo Húngaro, e o filtro de Kalman é usado para produzir trajetórias mais suaves. Para demonstrar a utilidade da técnica, foi desenvolvido um protótipo que permite ao usuário desenhar em uma superfície de forma natural e intuitiva. / Touch-based Human-Computer Interfaces (HCIs) are a widespread technology present in tablets, smartphones, and notebooks. This is a breakthrough which increases the ease of communication and at the same time reduces the need for interfaces such as mouse and keyboard. However, the interaction surface used by these systems is usually equipped with sensors to capture the movements made by the user, making it impossible to substitute this surface by any other such as a table, for example. On the other hand, the progress of commercial 3D depth sensing technologies in the past five years, having as a keystone Microsoft’s Kinect sensor, has increased the interest in 3D hand gesture recognition using depth data. In this dissertation, we present a natural Human-Computer Interface (HCI) for interaction with planar surfaces using a topdown RGB-D camera. Initially, the interaction plane is located in the 3D point cloud by using a variation of RANSAC with temporal coherence. Off-plane objects are segmented using the watershed transform based on an energy function that combines color, depth and confidence information. Skin color information is used to isolate the hand(s), and a novel 2D skeletonization process identifies the interaction fingers. Finally, the fingertips are tracked using the Hungarian algorithm, and a Kalman filter is applied to produce smoother trajectories. To demonstrate the usefulness of the technique, we also developed a prototype in which the user can draw on the surface using lines and sprays in a natural way.
|
Page generated in 0.038 seconds